PROGRAMMA EDUCATION FGA WORKING PAPER

N. **26** (3/2010)

La questione dell'equità scolastica in Italia Analisi delle performance in scienze dei quindicenni della scuola secondaria superiore

Luciano Benadusi, Rita Fornari, Orazio Giancola Università di Roma La Sapienza

© Fondazione Giovanni Agnelli, 2010	
Le opinioni espresse in questo testo sono responsabilità degli au necessariamente riflettono quelle della Fondazione Giovanni Ag	
The opinions expressed in this paper are the sole responsibility of do not necessarily reflect those of the Fondazione Giovanni Agne	
www.fondazione-agnelli.it	segreteria@fga.it

INDICE

1	L'EQUIT	A' SCOLASTICA IN ITALIA	4
	1.1 Efficac	ia ed equità	4
	1.2 II piano	o di analisi sul campione italiano di PISA 2006	6
	1.3 Uno sg	uardo d'insieme sulle performance dei quindicenni	8
2	LE DETE	RMINANTI DELLE PERFORMANCE IN SCIENZE	14
	2.1 Regres	sioni individuali sul campione nazionale di studenti delle scuole seconda	rie
	superio	ori	14
	_	sioni individuali sulle singole aree sovra campionate di studenti delle scu	
		darie superiori	
	2.3 I Cluste	er	23
3	L'ANALI	SI MULTILIVELLO: STUDENTI, SCUOLE, REGIONI	30
	3.1 L'anali	si a tre livelli in Italia	32
	3.2 L'anali	si a due livelli in Italia e nelle singole regioni sovra-campionate	36
	3.2.1	Scomposizione della varianza a due livelli (Il modello nullo per l'Italia e le singo	
	3.2.2	L'analisi a due livelli per le regioni sovra-campionate	
4	SOMMA	ARIO E CONCLUSIONI	55
	I.	Le dimensioni dell'equità	55
	II.	Le variabili che "contano"	
	III.	Nelle scuole e tra le scuole	
	IV. V.	Il contatto con la scienza I territori	
	v. VI.	Implicazioni per le policy	
5	Allegati		64
		zione del campione	
		ter analysis	
	5.3 Costru	zione tramite Acp della variabile "Effetto Escs medio vs Effetto filiera"	66
Ві	ibliografia		68

1 L'EQUITA' SCOLASTICA IN ITALIA

1.1 Efficacia ed equità

In Italia, il sistema educativo ed in particolare il sistema scolastico non sembra attraversare una stagione d'oro. Nonostante si siano susseguite alcune importanti riforme come quella dell'autonomia, il sistema appare tuttora ancorato a processi e strutture antiquati. In tali circostanze, un particolare rilievo assume la questione dell'equità e i fenomeni ad essa connessi, come quelli dell'abbandono, della dispersione e del sottorendimento (cioè bassi livelli di apprendimento), i quali, in taluni contesti territoriali e filiere formative, risultano addirittura allarmanti. Tuttavia, l'attenzione posta su di essa, da parte delle politiche e talora anche da parte del personale scolastico, appare minore rispetto a quella posta su altre questioni, peraltro altrettanto rilevanti, come quelle dell'innovazione, dell'efficacia/ efficienza e della qualità (Benadusi, Giancola, Viteritti, 2008).

Senza entrare nel merito di un complesso e lungo dibattito teorico sui concetti di equità e uguaglianza (si veda ad es. Benadusi, 2001; Benadusi, Bottani, 2006), l'equità nella ricerca di cui al presente paper sarà trattata a partire dalle riflessioni emerse in ambito internazionale dal Gruppo G.E.R.E.S.E. (*Groupe Européen de Recherche sur l'Equité des Systèmes Educatifs*), che ha elaborato un canovaccio teorico in base al quale ha formulato un complesso sistema di indicatori. Gli indicatori Gerese di maggiore interesse per la presente ricerca attengono all'analisi degli *output* dei sistemi scolatici, intesi non solo in termini di "carriera" ma anche in termini di "apprendimento", con riferimento cioè a strumenti di misurazione quali quelli offerti dai test Pisa¹. Guardare all'apprendimento e non solo alla carriera scolastica permette di sottrarsi ad una logica di inclusione solo formale e a breve termine, la quale si esprime attraverso il "tenere tutti dentro" piuttosto che il "non lasciare nessuno indietro" (Benadusi, Giancola, Viteritti, 2008). Questa distorta accezione del principio di equità ha, come effetto perverso, quello di distogliere

_

Avviata dall'Organizzazione per la Cooperazione e lo Sviluppo Economico (OCSE) nel 1997, PISA (*Programme for International Student Assessment*) è un'indagine internazionale con periodicità triennale che ha l'obiettivo di «verificare in che misura i giovani prossimi all'uscita dalla scuola dell'obbligo abbiano acquisito alcune *competenze (literacy)* giudicate essenziali per svolgere un ruolo consapevole e attivo nella società e per continuare ad apprendere per tutta la vita (*lifelong learning*)» (Invalsi, 2004). Concretamente l'indagine appura il possesso di conoscenze e abilità degli studenti quindicenni nelle aree della lettura, della matematica e delle scienze. L'attenzione non è puntata però tanto sulla padronanza di determinati contenuti curriculari, quanto piuttosto sulla capacità degli studenti di utilizzare conoscenze e abilità apprese a scuola per continuare ad apprendere e per far fronte ai problemi e compiti che si incontrano nella vita quotidiana. Ogni ciclo dell'indagine, pur valutando tutti e tre gli ambiti di conoscenza, approfondisce in particolare una delle tre aree di contenuti. Il dataset Pisa offre poi diverse variabili relative al tipo di istituto frequentato (indirizzi di studi), alle performance in termini di punteggio standardizzato nei test relativi a quattro aree di competenza (matematica, lettura, scienze, problem solving). Oltre a queste sono presenti un set di variabili motivazionali auto-percettive e di atteggiamento verso l'apprendimento e la scuola.

dall'affrontare seriamente il problema, procrastinandolo ai livelli scolastici successivi ed ingigantendolo.

In entrambi i casi, siano cioè relativi alla carriera o all'apprendimento di competenze, gli indicatori di equità Gerese si riferiscono a tre diverse dimensioni: le disuguaglianze interindividuali (ad esempio il grado di dispersione del numero di anni trascorsi nel percorso scolastico o dei punteggi ottenuti con riguardo alle competenze apprese), le diseguaglianze intercategoriali (ad esempio l'impatto dell'origine sociale sulla probabilità di ottenere un diploma o una laurea o sulla probabilità di ottenere punteggi elevati nei test sulle competenze apprese) e la quota di allievi restata sotto una soglia minima (tale può essere considerato ad esempio il benchmark di Lisbona rispetto al superamento dell'early school leaving o alla contrazione delle insufficienze di apprendimento nel reading).

Dalle comparazioni fra i sistemi nazionali europei l'Italia è risultata collocata in una posizione chiaramente arretrata per alcuni di tali indicatori: in particolare per quelli riguardanti la soglia minima (elevati tassi di abbandono e di ritardo nella scuola secondaria, ampia fascia di studenti con basso apprendimento delle competenze secondo i test Pisa) e anche in almeno due di quelli relativi alle diseguaglianze in base all'origine sociale (nell'acquisizione di un diploma secondario e nel conseguimento della laurea). Inoltre, quando le nostre performance in termini di equità appaiono al confronto internazionale più soddisfacenti, come è nel caso dell'impatto dell'origine sociale sui punteggi ottenuti nei test di apprendimento, ciò si accompagna a cattive performance in termini di efficacia (misurata attraverso i punteggi medi e la frequenza dei punteggi eccellenti). Il rapporto fra indicatori di equità e indicatori di efficacia è un punto importante da tenere sotto controllo per verificare empiricamente se ed in quale misura queste due importanti finalità delle politiche educative possano essere considerate compatibili, convergenti o invece divergenti. Sull'insieme dei temi ora accennati sarebbe, tuttavia, utile aggiornare le evidenze prodotte dall'indagine Gerese che si è in gran parte avvalsa di fonti oramai invecchiate, come la prima edizione di Pisa (2000).

La ricerca, pur muovendosi in linea con altre analisi già effettuate sui dati PISA (si vedano le analisi OCDE e Invalsi, nonché i lavori di Checchi, Bratti, Filippin sui dati Pisa 2003 oppure di Gasperoni sui dati Pisa 2006) ha come valore aggiunto sia un elemento di tipo interpretativo che è quello di connettere la questione dell'efficacia con quella dell'equità, sia un elemento di tipo sostantivo che è quello di una comparazione tra i territori di cui si dispone di un campione autonomo (11 regioni ripartite tra Nord e Sud e 2 province autonome).

La complessità del disegno di ricerca ha consentito dunque di indagare il ruolo e il peso delle variabili sociali, educative, organizzative nella spiegazione della varianza tra gli studenti e le scuole all'interno delle realtà territoriali del Nord e del Sud.

1.2 Il piano di analisi sul campione italiano di PISA 2006

L'estensione del campione nazionale e dei campioni regionali nell'indagine Pisa 2006 consente di sviluppare analisi molto focalizzate sull'efficacia, sull'equità e sull'impatto di fattori endogeni (inclusi anche quelli operanti a livello di istituto scolastico) ed esogeni (caratteristiche dei territori). Considerata l'importanza del tema dell'equità sia in relazione alle questioni dell'inclusione e della coesione sociale sia ai fini di un ruolo attivo della scuola come agente di una mobilità sociale ascendente basata sul merito, ci siamo proposti un'analisi secondaria sui dati Pisa avente i seguenti obiettivi:

- verificare se, fra le cinque macroaree geografiche e più in particolare fra alcune delle regioni sovra campionate, si manifestano differenze e di quale entità e tipo;
- rilevare se gli effetti dei fattori interni presentino una struttura costante ovvero si diversifichino fra i contesti territoriali considerati;
- tenere sotto controllo gli effetti delle variabili di secondo livello (variabili scuole) al fine di stimare come influenzino le performance tanto in modo autonomo, quanto in concomitanza con le variabili "individuali"
- infine, controllare l'effetto delle variabili di livello superiore (differenze tra le regioni e spesa in istruzione a livello regionale).

In una prima fase della ricerca a carattere di cornice, si è condotta un'analisi aggregata a livello nazionale, per macro aree geografiche e per singole regioni. In questa linea sono state oggetto di studio le performance e l'equità, nonché il ruolo giocato dalla scelta della tipologia di scuola secondaria superiore. Questa attività di indagine si è mossa su un terreno consolidatosi nel tempo (vedi rapporti Invalsi su Pisa 2006). Ma, in aggiunta alle analisi standard svolte dall'Invalsi, il nostro obiettivo è stato, come si è detto, quello di indagare più a fondo le questioni connesse all'equità.

Una seconda fase di analisi si è soffermata sull'uso congiunto di tre tipi di variabili prodotte da Pisa 2006:

- le "student variables": le perfomance ai test, il background dei singoli studenti, il tipo di scuola secondaria frequentata, le variabili motivazionali e di contatto con la scienza;
- le "school-level variables"²: con riferimento in questo caso non agli studenti ma alle singole scuole: le loro caratteristiche sociali (il background aggregato e il livello di segregazione) ed altre variabili significative rilevate a livello scuola;

¹ Dal questionario Pisa sulle scuole possono essere desunte alcune importanti informazioni relative alle caratteristiche educative, organizzative e micro - politiche dei singoli istituti, quali ad esempio: le dimensioni (numero di iscritti), la natura giuridica (paritaria o statale), il tasso di regolarità, le politiche di composizione delle classi, la numerosità e le caratteristiche del personale docente, le risorse strumentali presenti (computer, accessi web, risorse multimediali, biblioteche, etc.), i canali di finanziamento utilizzati (quelli statali e quelli provenienti da altre istituzioni e soggetti), la concorrenza di altre scuole sullo stesso territorio, le attività extra-

• le variabili "territoriali" (spesa regionale per studente)³, che sono state usate come strumenti di controllo nell'analisi comparativa.

Le analisi nelle quali si sono usate le suddette variabili sono state svolte utilizzando metodi di regressione multipla (lineare e non) e metodi di regressione multi-level (che permettono di analizzare congiuntamente le variabili individuali, quelle a livello di singola scuola e le variabili territoriali). Le variabili utilizzate sono specificate nello schema 1.1.

Schema 1.1. Variabili utilizzate nelle analisi

	database	Descrizione	Etichetta utilizzata nel test	
Dipendente	Scienze	Media dei 5 punteggi in scienze	Scienze	
Socio-	Genere: Femmina	Categoria di riferimento: maschio	Femmina	
anagrafiche	Escs	Index of economic, social and cultural status PISA 2006	Escs individuale	
Percorso scolastico	Irregolare	Frequenza di una classe inferiore a quella modale (secondo superiore)	Irregolare	
Mativariani	INTSCIE	General interest in learning science PISA 2006 (WLE)	Interesse per la scienza	
Motivazioni	JOYSCIE	Enjoyment of science PISA 2006 (WLE)	Piacere nello studio della scienza	
Curricolo	LESSONS	Regular lessons - Science Q31a	Ore di scienza a scuola	
Esperienza	SCIEACT	Science activities PISA 2006 (WLE)	Attività extra-scolastiche legate alla scienza	
Tipo di scuola	Liceo e Tecnico	Categoria di riferimento: Professionale	Liceo e Tecnico	
Background socio- culturale aggregato	Escs medio	Indice Escs medio delle scuole	Escs medio	
	STRATIO	Teacher-student ratio	Ratios docenti/studenti	
Variabili del	SCIPROM	School activities to promote the learning of science PISA 2006 (WLE)	Promozione della scienza	
sulla scuola	SCMATEDU	Quality of educational resources PISA 2006 (WLE)	Qualità attrezzature	
dirigenti	TCSHORT	Teacher shortage (negative scale) PISA 2006 (WLE)	Carenze docenti	
	PRESS	Pressione genitori sulla vita scolastica	Pressione delle famiglie sulle attività scolastiche	
	Socio- anagrafiche Percorso scolastico Motivazioni Curricolo Esperienza Tipo di scuola Background socio- culturale aggregato Variabili del questionario sulla scuola compilato dai	Socio- anagrafiche Escs Percorso scolastico Irregolare Motivazioni INTSCIE JOYSCIE Curricolo LESSONS Esperienza SCIEACT Tipo di scuola socio- culturale aggregato Variabili del questionario sulla scuola compilato dai dirigenti Rescs Femmina Ageneric Femmina Irregolare INTSCIE JOYSCIE Liceo e Tecnico Background SCIEACT SCIPROM SCIPROM SCIPROM TCSHORT	Socio- anagrafiche Percorso scolastico Intregolare Interest in learning science PISA 2006 (WLE) Indice Escs medio delle scuole Indice Escs medio delle scuole	

didattiche e di orientamento (conferenze, gite, partecipazione ad eventi, etc.), la pressione da parte delle famiglie e le aspettative dei genitori degli studenti.

Altre informazioni relative ai singoli istituti possono essere acquisite aggregando a quel livello dati rilevati a livello individuale tramite il questionario studenti. Si possono così costruire variabili quali il background aggregato e il livello di segregazione, la performance media di istituto e la variazione inter-individuale dei punteggi. Tra le numerose variabili costruibili con questi due tipi di informazioni sono state selezionate quelle che, dopo un primo test, sono apparse più rilevanti ai fini dell'analisi.

³ Per costruire queste variabili, ovviamente, sono state utilizzate fonti diverse da Pisa.

Variabili contestuali (livello regione)	pesa regioni	Spesa	Spesa regionale per studente (Spesa comuni, province e regioni)	Spesa regionale per studente
--	--------------	-------	---	---------------------------------

Il lavoro di ricerca qui presentato si articola come segue:

- nel pag.1.3 si illustrano le principali statistiche descrittive relative alle performance ai test Pisa 2006 (nell'area di competenza scientifica);
- nel cap.2 si le illustrano determinanti delle performance in scienze a livello nazionale, di macro aree geografiche (Nord, Centro, Sud) e di aree geografiche sovra campionate. Il cap.2 si basa su vari set di analisi di regressione lineare multipla
- nel cap.3 si illustrano i risultati dell' analisi multilivello (livello studente, livello scuole, livello regione). Anche in questo caso, come nel cap.2, si presentano prima i risultati nazionali e poi l' analisi a due livelli nelle singole aree geografiche sovracampionate.

1.3 Uno sguardo d'insieme sulle performance dei quindicenni

Prima di vedere le analisi sulle determinanti delle performance in scienze, presentiamo qui alcuni dati sui principali indicatori di nostro interesse in modo di fornire una visione complessiva delle performance degli studenti quindicenni della scuola secondaria sul piano nazionale, nelle macro-aree territoriali e nelle diverse regioni di cui si dispone un campione autonomo.

Come avremo modo di vedere, le regioni presentano un alto grado di differenziazione non solo rispetto agli apprendimenti in scienze, ma anche rispetto alle altre due *literacy* indagate dall'indagine Pisa, quella della matematica e della lettura. Le regioni, inoltre, presentano differenze consistenti anche per quanto riguarda altri importanti elementi, come quelli sociali ed economici, ravvisabili nella distribuzione dell'indice Escs fornito da Pisa, e quelli attinenti alla filiera di istruzione, individuabili nei diversi esiti ottenuti dai diversi tipi di scuola, tanto in termini di regolarità che di competenze acquisite.

Vediamo allora in maggiore dettaglio alcune distribuzioni all'interno dei contesti regionali. In primo luogo, dalla tabella 1.1, che riporta le performance medie ottenute dagli studenti nelle diverse regioni, possiamo osservare un'omogeneità dei risultati ottenuti nelle diverse prove di scienze, matematica e lettura. Trento, Bolzano, Friuli Venezia Giulia e Veneto, cioè le regioni del Triveneto (che per noi è il Nord-Est dal momento che l'Emilia-Romagna, geograficamente in una posizione intermedia fra e Nord-Ovest e Nord-Est e dall'Ocse collocata in quest'ultima circoscrizione, di fatto mostra maggiori somiglianze con le regioni nord-occidentali,) presentano punteggi alti in tutte e tre le prove. Seguono con punteggi medi Lombardia, Piemonte Emilia Romagna e Liguria. Allo stesso modo, tutte le regioni del Sud (continentale ed insulare) presentano punteggi bassi in tutte le prove. Se

poi passiamo ad esaminare il campione nazionale e guardiamo alla tripartizione fra Nord, Centro e Sud ritroviamo di nuovo una struttura costante in tutte le tre prove, con un forte divario tra il primo ed il terzo e il secondo in una posizione intermedia.

Se osserviamo la tabella 1.2, che riporta la deviazione standard dei punteggi in ogni regione, possiamo vedere che una regione del Nord (l'Emilia Romagna) e una regione del Sud (la Sicilia) presentano una minore eguaglianza inter-individuale nei punteggi in scienze anche se la prima, come abbiamo visto, è associata a buone performance (media regionale in scienze pari a 510) mentre la seconda a scarse performance (media regionale in scienze pari a 440, la più bassa in assoluto). I territori sotto questo profilo più equi sono Trento e Bolzano (con le migliori performance: 549 e 548) e Puglia e Campania (con basse performance: 448 e 452, entrambe sotto la media convenzionale stabilita pari a 500). Passando alle tre macro-aree si nota invece una differenza: nelle scienze la maggiore dispersione dei risultati si ha al Nord mentre nella matematica e nelle lettura si ha al Sud.

Tutte le regioni del Sud, come si legge dalla tabella 1.3, presentano una quota molto alta (pari o superiore) di studenti che non raggiungono la soglia minima di competenze (cioè il livello 2 della scala Ocse) e solamente l'uno per cento raggiunge l'eccellenza (livelli 5 e 6). I territori del Triveneto, al contrario, presentano una bassissima quota di studenti sotto la soglia minima (intorno al 5%) e la più alta quota di studenti eccellenti (10% e più). Le regioni del Nord Ovest, infine, si pongono come una realtà a metà tra le due con circa il 15% di studenti sotto la soglia minima e il 6% di eccellenti. Esaminando la tripartizione fra le macro-aree osserviamo che nel Nord, complessivamente considerato, la percentuale dei sotto-soglia ammonta a meno di un terzo di quella del Sud e quella degli eccellenti è pari ad otto volte la percentuale del Sud.

Tabella 1.1 Performance medie delle regioni e delle macro aree (Pisa 2006)

Unità territoriali	Scienze	Matematica	Lettura
Trento	549	535	539
Bolzano	548	536	534
Friuli Venezia Giulia	534	513	519
Veneto	533	520	521
Lombardia	513	499	505
Piemonte	510	492	507
Emilia Romagna	510	494	496
Liguria	496	478	491
Sardegna	453	432	443
Basilicata	452	444	447
Puglia	448	437	442
Campania	444	437	440
Sicilia	440	426	429
Italia	479	465	473
Nord	517	502	508
Centro	489	469	484
Sud	444	432	438

Tabella 1.2 Eguaglianza interindividuale (dispersione dei punteggi nelle regioni) (Pisa 2006)

Unità territoriali	Scienze	Matematica	Lettura
Emilia Romagna	91	93	96
Sicilia	90	84	101
Liguria	89	81	96
Sardegna	88	97	112
Piemonte	86	81	91
Lombardia	84	80	91
Basilicata	82	80	99
Veneto	81	82	85
Friuli Venezia Giulia	81	81	85
Puglia	79	78	98
Campania	79	88	90
Bolzano	78	77	79
Trento	73	77	74
Italia	91	91	103
Nord	86	84	91
Centro	83	80	99
Sud	83	88	103

Tabella 1.3 Soglia minima ed eccellenza in scienze (%) (Pisa 2006)

		SCIENZE		
	Soglia minima	Livello Medio	Eccellenza	
Sicilia	40	59	1	
Campania	35	64	1	
Sardegna	33	65	2	
Puglia	33	66	1	
Basilicata	32	67	1	
Liguria	18	77	5	
Emilia Romagna	15	78	7	
Piemonte	14	80	6	
Lombardia	12	82	7	
Veneto	7	83	10	
Friuli Venezia Giulia	7	83	10	
Bolzano	5	82	14	
Trento	4	84	12	
Italia	23	72	4	
Nord	11	81	8	
Centro	18	77	5	
Sud	36	63	1	

Una volta viste le performance, soffermiamoci ora sulla distribuzione delle due variabili più rilevanti per la nostra analisi: l'indice Escs (tabella 1.4) e il tipo di scuola (tabella 1.5).

Riguardo all'indice di background socio-economico familiare si osserva una media differente nei diversi contesti regionali che, fatta eguale a 0 la media nazionale, va da un massimo di 0,237 della Liguria ad un minimo di -0,318 della Puglia. Inoltre, possiamo vedere che le regioni del Sud sono tutte posizionate alla fine della graduatoria. Infatti, quando si passa a vedere la tripartizione il Sud risulta a -0,202 e risulta anche avere una dispersione dell'indice alquanto maggiore che nel Nord e nel Centro.

Per quanto riguarda la distribuzione rispetto ai tipi di scuola osserviamo, invece, una maggiore concentrazione delle iscrizioni nei licei rispetto agli altri tipi di scuola nei territori di Trento (53% del totale delle scuole della provincia) e Liguria (51% del totale delle scuole della regione). Puglia e Basilicata, invece, sono le regioni con una più alta concentrazione di professionali (27%). Quanto agli istituti tecnici, le regioni dove si ha la percentuale più elevata sono la Lombardia (40%) e l'Emilia Romagna (39,7%). Nel Nord, complessivamente considerato, la popolazione scolastica dei licei (41,3% del totale) è più ridotta rispetto al Sud (45,6%), mentre il contrario accade per gli istituti tecnici (36,0% contro 30,8%). La maggiore quota di studenti nei professionali si registra invece nel Centro (25,7%), mentre Nord e Sud hanno percentuali abbastanza vicine.

Rispetto al tipo di scuola è interessante introdurre le diversità della performance in scienze. Nella tabella 1.6 a tal fine si riportano le medie dei punteggi per regione e filiera. Anche in questo caso, si notano delle disuguaglianze tanto tra indirizzi di studio, visto che le performance dei liceali sono più alte di quelli degli altri istituti in tutte le regioni, quanto tra le regioni, visto che gli scarti tra i punteggi dei liceali e degli studenti degli altri tipi di scuola variano nelle varie regioni. In particolare, le regioni con punteggi più squilibrati tra gli indirizzi sono Piemonte, Basilicata, Sardegna e Sicilia. È bene sottolineare, inoltre, che solo nel primo caso si tratta di punteggi elevati mentre nelle tre regioni del Sud anche i liceali ottengono punteggi pari o inferiori alla media Ocse convenzionale di 500. Le regioni in cui gli scarti tra liceali e gli altri due tipi di scuola sono minori che nelle altre regioni sono Bolzano, Friuli Venezia Giulia, Trento e Campania. Anche in questo caso, l'equità della Campania è associata ad una scarsa efficacia (la media dei liceali in questo caso è addirittura la più bassa di tutte ed è pari a solo 474). Quanto al confronto fra le tre macroaree, vi è da notare che il differenziale tra performance medie di licei e tecnici da un lato e degli istituti professionali dall'altro è un poco maggiore nel Nord rispetto al Sud.

Tabella 1.4 Valori medi dell'indice Escs (aree sovra campionate) (Pisa 2006)

Regioni	Minimo	Massimo	Media	Deviazione Standard
Liguria	-2,681	2,970	0,237	0,952
Emilia Romagna	-3,389	2,970	0,165	0,975
Piemonte	-2,632	2,578	0,103	0,983
Trento	-2,961	2,970	0,102	0,866
Friuli Venezia Giulia	-2,297	2,970	0,083	0,935
Veneto	-2,227	2,482	0,069	0,917
Bolzano	-2,848	3,022	0,067	0,800
Lombardia	-2,556	2,561	-0,060	0,892
Campania	-2,620	2,970	-0,119	1,017
Sardegna	-3,319	2,561	-0,135	1,023
Sicilia	-2,655	2,561	-0,156	1,032
Basilicata	-2,388	2,352	-0,248	0,947
Puglia	-2,772	2,561	-0,318	0,973
Italia	-3,389	3,022	-0,044	0,976
Nord	-3,389	3,022	0,059	0,935
Centro	-2,586	3,022	0,129	0,930
Sud	-3,319	2,970	-0,202	1,005

Tabella 1.5 Distribuzione degli studenti per Regioni e filiera educativa

Regioni	Licei (%)	Tecnici (%)	Professionali (%)	Totale (v.a.)
Trento	53,0	36,9	10,1	3.417
Liguria	51,2	24,8	24,0	11.026
Sardegna	49,8	32,8	17,4	15.333
Sicilia	49,7	27,3	23,0	51.649
Campania	48,5	30,1	21,4	66.604
Piemonte	47,0	31,3	21,7	33.751
Friuli Venezia Giulia	45,0	28,9	26,1	8.495
Bolzano	43,1	36,9	20,0	3.282
Veneto	39,8	35,3	24,9	36.450
Basilicata	39,3	33,8	26,9	6.359
Puglia	38,0	34,3	27,6	45.074
Emilia Romagna	37,8	39,7	22,5	29.500
Lombardia	37,3	40,0	22,6	62.608
Italia	44,0	32,4	23,7	499.614
Nord	41,3	36,0	22,8	189.212
Centro	45,6	28,8	25,7	89.064
Sud	45,6	30,8	23,6	221.340

Tabella 1.6 Punteggi medi ottenuti dagli studenti per regione e filiera educativa (Scienze)

Regioni	Liceo	Tecnico	Professionale
Bolzano	574	547	494
Veneto	573	534	470
Friuli Venezia Giulia	566	543	470
Trento	564	548	470
Emilia Romagna	559	513	422
Lombardia	558	505	453
Piemonte	556	495	429
Liguria	528	488	434
Basilicata	500	447	388
Sardegna	499	426	372
Puglia	495	443	391
Sicilia	485	421	364
Campania	474	437	385
Italia	518	475	414
Nord	559	513	448
Centro	530	482	422
Sud	481	436	381

2 LE DETERMINANTI DELLE PERFORMANCE IN SCIENZE

2.1 Regressioni individuali sul campione nazionale di studenti delle scuole secondarie superiori

Nella prima tornata di analisi abbiamo considerato l'intero campione italiano (N = 20.009) di studenti delle scuole secondarie superiori. Piuttosto che utilizzare le cinque macro aree proposte da Pisa 2006, abbiamo riaggregato le due macro aree del Nord e del Sud in due uniche macro aree (Nord e Sud); in tal modo nell'analisi abbiamo suddiviso il campione in tre macro aree (Nord, Centro, Sud).

Nel primo modello di regressione lineare abbiamo analizzato quali fossero le determinanti delle competenze in Scienze (media dei punteggi delle cinque prove di scienze proposte da Pisa 2006). L'analisi (vedi tab.2.1) mostra nel modello 1 (con un R² del 28% della varianza complessiva) che, tra le variabili considerate, il background socioeconomico medio della scuola (d'ora in poi Escs medio) esercita il peso più forte. Ad esso si accompagna un effetto consistente prodotto dal tipo di scuola frequentato (effetto filiera). Il background individuale (d'ora in poi Escs individuale) invece ha un effetto decisamente contenuto (è da sottolineare che usando l'Escs individuale come unico regressore esso ha un valore di beta leggermente più elevato che viene in parte assorbito dall' effetto dell'Escs medio, quando questo viene inserito nel modello). La variabile di genere (femmina vs. maschio) pare avere un impatto negativo anche se di entità egualmente modesta. Ancora più modesto risulta l'impatto della deviazione standard di Escs nella singola scuola. Nel modello 1 bis abbiamo introdotto anche la variabile "irregolari" - studenti che si trovano un anno indietro rispetto alla carriera scolastica standard – il cui effetto è di misura intermedia fra le variabili individuali (deboli) e quelle collettive e istituzionali (forti) ed è ottenuto soprattutto a scapito della variabile "liceo" dove si concentrano i "regolari".

Nei modelli 2 e 2bis abbiamo controllato quanto precedentemente emerso inserendo le aree geografiche come *dummy variables*. Il controllo geografico, fa crescere il valore di R² (che arriva fino a 0,40) e produce interessanti cambiamenti nella struttura esplicativa delle differenze nella performance degli studenti ai test. Infatti, l'effetto filiera diventa più evidente (vedi il valore del beta di "Liceo") mentre *Escs medio* vede praticamente dimezzarsi il suo potenziale esplicativo. Inoltre (come era lecito aspettarsi) la *dummy* "Nord" (rispetto alla categoria di riferimento che in questo modello è "Sud") ha un valore di beta molto elevato (0,36), quasi pari a quello di "liceo" (0,38).

Tabella 2.1 Modelli di regressione sull'intero campione nazionale di studenti delle scuole superiori

	Modello 1	Modello 1 Bis	Modello 2	Modello 2 Bis
R2	0,28	0,30	0,38	0,40
Escs indiv	0,07	0,06	0,06	0,06
Femmina	-0,07	-0,08	-0,08	-0,10
Escs medio	0,34	0,33	0,16	0,15
Deviazione standard di Escs medio	0,02	0,01	0,01	0,01
Liceo	0,27	0,23	0,42	0,38
Tecnico	0,21	0,19	0,24	0,22
Nord			0,35	0,36
Centro			0,15	0,15
Irregolare		-0,16		-0,18

Sign 0,000

Per approfondire ulteriormente l'analisi abbiamo usato un procedimento di regressione step-wise⁴ che, a partire dalle variabili motivazionali individuali e dalle pratiche didattiche e di apprendimento presenti nel dataset Pisa 2006, ci ha permesso di selezionare 4 variabili che abbiamo successivamente testato singolarmente ed in modo congiunto. Tali variabili sono due variabili "motivazionali" (*Piacere per la scienza e Interesse per la scienza*) e due variabili relative alle attività curricolari (numero di ore di scienze a scuola) e all'esperienza dell'apprendimento informale (attività extrascolastiche legate alle scienze). Queste quattro variabili sono state scelte in quanto rivelatesi le più significative in base ad un set di modelli di regressione che includevano tutte le variabili motivazionali e sull'apprendimento curricolare/extra curricolare, sempre relativamente alle scienze, proposte da Pisa. Di seguito (tab.2.2-2.5) si riportano le tabelle con gli effetti lordi e quelli controllati per background (individuale ed aggregato) e filiera di queste variabili prese una per volta. Nella tab. 2.6, infine, si riportano i modelli che includono simultaneamente tutte e quattro le variabili. Fra queste le uniche due che hanno un effetto netto consistente sono quelle relative alle ore di insegnamento e al piacere provato nello studiare le scienze.

Tabella 2.2 Controlli sulle regressioni individuali – Effetto della variabile Piacere della scienza

					-
	Mod 1	Mod 2	Mod 3	Mod 4	Mod 5
R2	,052	,278	,234	,304	,325
Escs individuale		,064		,065	,059
Escs medio		,441		,334	,332
Deviazione standard di Escs medio		,006		,021	,017
Liceo			,543	,232	,194
Tecnico			,310	,209	,192
Piacere per la scienza	,229	,167	,177	,161	,156
Irregolare					-,148

Sign ,000

_

⁴ Utilizzando il metodo step wise, sono state man mano escluse le variabili più collineari tra loro (e con Escs), con i valori di beta più bassi e quelle con più bassa significatività statistica.

Tabella 2.3 Controlli sulle regressioni individuali – Effetto della variabile Interesse per la scienza

	Mod 1	Mod 2	Mod 3	Mod 4	Mod 5
R2	,042	,269	,219	,293	,316
Escs individuale		,067		,068	0,062
Escs medio		,442		,342	0,340
Deviazione standard di Escs medio		,007		,023	0,019
Liceo			,540	,220	0,179
Tecnico			,306	,203	0,184
Interesse per la scienza	,204	,138	,134	,126	0,124
Irregolare					-0,155

000, Sign

Tabella 2.4 Controlli sulle regressioni individuali – Effetto della variabile Ore scolastiche di scienze

	Mod 1	Mod 2	Mod 3	Mod 4	Mod 5
R2	,053	,302	,237	,317	,333
Escs individuale		,070		,070	0,066
Escs medio		,456		,352	0,349
Deviazione standard di Escs medio		,023		,026	0,023
Liceo			,538	,206	0,174
Tecnico			,250	,142	0,132
Ore scolastiche di scienze	,231	,231	,207	,211	0,196
Irregolare					-0,131

000, Sign

Tabella 2.5 Controlli sulle regressioni individuali – Effetto della variabile Attività extrascolastiche legate alla scienza

	Mod 1	Mod 2	Mod 3	Mod 4	Mod 5
R2	,021	,261	,216	,289	,331
Escs individuale		,062		,063	0,056
Escs medio		,456		,343	0,341
Deviazione standard di Escs medio		,006		,021	0,017
Liceo			,560	,241	0,200
Tecnico			,317	,213	0,195
Attività extrascolastiche legate alle scienze	,144	,100	,109	,096	0,097
Irregolare					-0,155

000, Sign

Tabella 2.6 Controlli sulle regressioni individuali. Modello completo

	Mod 1	Mod 2	Mod 3	Mod 4	Mod 5
R2	,094	,318	,257	,332	,347
Escs individuale		,062		,062	0,058
Escs medio		,441		,347	0,345
Deviazione standard di Escs medio		,020		,025	0,022
Liceo			,515	,193	0,162
Tecnico			,250	,144	0,134
Piacere per la scienza	,148	,114	,131	,116	0,110
Interesse per la scienza	,089	,044	,029	,033	0,036
Ore scolastiche di scienze	,192	,206	,178	,186	0,171
Attività extrascolastiche legate alle scienze	-,009	-,011	,001	-,008	-0,003
Irregolare					-0,128

000, Sign

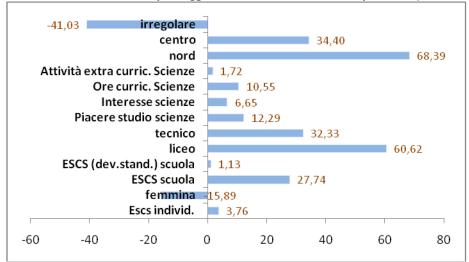

Nella tabella 2.7, nel primo modello, abbiamo usato simultaneamente tutte le variabili per stimare una sorta di "modello nazionale" mentre nel secondo modello abbiamo poi inserito il controllo territoriale. Nei modelli 1e 1bis, versioni estese rispetto a quanto illustrato nei corrispondenti modelli presentati nella tab.2.1, il valore di R² cresce pur non cambiando la complessiva struttura esplicativa. Tra le nuove quattro variabili inserite sono ancora "Ore di lezione" e "Piacere della scienza" ad avere i valori di beta più consistenti. Inserendo poi il controllo geografico (modelli 2 e 2bis), si evidenziano di nuovo da un lato l'effetto territoriale e dall'altro l'effetto filiera combinato all'effetto Escs Medio. Il potenziale esplicativo del modello cresce molto arrivando nel modello 2bis ad un R² pari al 45,2% di varianza spiegata. Nel grafico 2.1, infine, vengono riportati i punteggi non standardizzati relativi al modello 2bis (ultima colonna della tab. 2.7).

Tabella 2.7 Determinanti delle competenze in Scienze. Modello sull'intero campione italiano di studenti di scuole secondaria superiore con le variabili territoriali

					Modello 2bis
	Modello	Modello	Modello	Modello	Valori non
	1	1bis	2	2bis	standardizzati
					(intercetta=392)
R ²	,336	,352	,429	,452	,452
Escs individuale	,054	0,048	,048	0,041	3,8
Femmina	-,067	-0,077	-,077	-0,089	-15,9
Escs medio	,341	0,339	,167	0,157	27,7
Deviazione standard di Escs medio	,023	0,020	,015	0,010	1,1
Liceo	,212	0,182	,368	0,338	60,6
Tecnico	,138	0,126	,182	0,170	32,3
Piacere per la scienza	,115	0,108	,124	0,116	12,3
Interesse per la scienza	,036	0,039	,056	0,061	6,7
Ore scolastiche di scienze	,186	0,172	,150	0,131	10,6
Attività extrascolastiche sulle scienze	-,016	-0,012	,012	0,017	1,7
Nord			,358	0,372	68,4
Centro			,142	0,148	34,4
Irregolare		-0,133		-0,160	-41,0

000, Sign

Grafico 2.1 Contributi in termini di punteggi Pisa 2006 delle variabili indipendenti (vedi tab.2.7)

Visto l'impatto così forte delle variabili di controllo ("dummies variables" delle aree geografiche), abbiamo replicato i modelli suddividendo il campione nazionale in tre sottocampioni relativi alle tre macro-aree (Nord, Centro, Sud).

I tre modelli relativi alle differenti macro aree presentano un andamento simile in termini complessivi ma anche un'interessante differenza. In tutti e tre il fattore maggiormente esplicativo delle differenze individuali di performance ai test di scienze è il tipo di scuola frequentato (vedi i valori beta standardizzati della variabile "liceo"). Il fatto più rilevante è, tuttavia, che tale impatto è meno forte nella macro area "Sud", dove invece è decisamente più forte che nel "Nord" e nel "Centro" l'effetto dalla variabile *Escs medio*. In altre parole, l'effetto del tipo di scuola si fa più marcato passando dal Sud al Nord mentre quello relativo alla "composizione sociale" della scuola è meno forte al Nord, di media entità al centro e più forte al Sud (questo effetto sarà successivamente riconfermato e per certi aspetti chiarito nel capitolo relativo all'analisi multilivello).

Tabella 2.8 Determinanti delle competenze in Scienze. Modello sull'intero campione italiano di studenti di scuole secondaria superiore diviso per aree geografiche (N = 20.009)

	Sud	Sud bis	Centro	Centro bis	Nord	Nord bis
R2	0,290	0,324	0,303	0,310	0,265	0,320
Escs individuale	0,056	0,048	0,077	0,073	0,080	0,067
Femmina	-0,097	-0,108	-0,095	-0,103	-0,070	-0,091
Escs medio	0,294	0,279	0,119	0,117	0,053	0,044
Deviazione standard di Escs medio	0,059	0,050	0,065	0,069	0,010	0,003
Liceo	0,348	0,313	0,494	0,467	0,560	0,508
Tecnico	0,217	0,195	0,259	0,249	0,328	0,298
Irregolare		-0,191		-0,086		-0,242

Sign ,000

Anche controllando il modello con l'inserimento della variabili motivazionali e sull'apprendimento curricolare ed extra curricolare (tab.2.9) l'assetto dei tre modelli non cambia. Degno di nota è però il fatto che il piacere provato nello studio delle scienze ha un potere predittivo della performance decisamente maggiore nel Centro e nel Nord rispetto al Sud. Ed anche il fatto che il divario negativo ricollegabile al genere (minori performance delle donne) è significativamente minore nel Nord rispetto alle altre due aree geografiche. Il contrario avviene per l'Escs individuale che appare meno influente al Sud rispetto alle altre due aree. Infine, il Nord si distingue anche per la maggiore influenza, rispetto al Centro ed in misura minore rispetto al Sud, che vi esercita la variabile "irregolarità", cioè il fenomeno dei ritardi.

Tabella 2.9 Determinanti delle competenze in Scienze. Modello sull'intero campione italiano di studenti di scuole secondaria superiore diviso per aree geografiche (N = 20.009)

	Sud	Sud Bis	Centro	Centro bis	Nord	Nord bis
R2	,348	0,373	,350	0,353	,345	0,390
Escs individuale	,038	0,031	,069	0,067	,059	0,048
Femmina	-,093	-0,101	-,091	-0,097	-,067	-0,087
Escs medio	,295	0,282	,107	0,103	,071	0,059
Deviazione standard di Escs medio	,062	0,054	,047	0,050	,006	0,001
Liceo	,289	0,264	,480	0,460	,477	0,436
Tecnico	,153	0,141	,239	0,234	,233	0,219
Piacere per la scienza	,116	0,108	,151	0,144	,149	0,139
Interesse per la scienza	,051	0,058	,099	0,101	,048	0,054
Ore scolastiche di scienze	,181	0,161	,042	0,034	,190	0,162
Attività extrascolastiche legate alle scienze	,005	0,011	-,009	-0,017	,032	0,040
Irregolare		-0,163		-0,063		-0,221

sign ,005

Infine, in vista dell'analisi multilivello, si sono testate le variabili rilevate a livello scuola (tramite il questionario dirigenti). Come nella fase di scelta delle variabili motivazionali e di quelle relative curricolari ed esperienziali, sono state man mano escluse le variabili più collineari tra loro (e con Escs), quelle con i valori di beta più bassi e quelle con più debole significatività statistica. Le variabili che dall'analisi Step Wise sul database scuole sono emerse come le più significative sono le seguenti: Rapporto numerico docenti/studenti, Attività scolastiche di promozione dell'apprendimento della scienza, Qualità delle risorse educative, Carenze dei docenti di scienze (scala negativa), Pressione dei genitori sulla vita scolastica. Nella tab. 2.10 possiamo osservare che quando queste variabili sono prese una alla volta come regressori del punteggio medio in scienze delle scuole, il loro peso esplicativo non è mai particolarmente elevato (anche se sempre statisticamente significativo). La più importante sembra essere quella relativa alle carenze dei docenti (ovviamente, secondo la valutazione dei capi di istituto). Nel modello completo (12) possiamo poi osservare come il peso delle cinque variabili rilevate a livello scuola venga fortemente ridimensionato tanto dall'interazione tra queste quanto da un parziale assorbimento dei loro effetti da parte dell'Escs-medio della scuola e da parte della filiera.

Tabella 2.10 Regressioni a livello scuola. Variabile dipendente: Punteggio medio della scuola in scienze

	МО	МО	МО	МО	МО	МО	МО	МО	МО	МО	МО	МО
	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
R2	46%	39%	13%	4%	3%	3%	1%	23%	50%	44%	53%	55%
Escs medio	0,70								0,61		0,50	0,46
Escs s.d.	-0,15								-0,12		-0,17	-0,14
liceo		0,79								0,71	0,41	0,40
Tecnico		0,45								0,39	0,33	0,30
Docenti/student			0,36					0,33	0,07	0,05*		0,0*
Promoz. Scienza				0,19				0,14	0,07	0,05*		0,04*
Qualità attrezzat.					0,18			0,21	0,12	0,13		0,08
Carenze docenti						0,18		0,23	0,18	0,18		0,16
Pressione fam.							0,10	0,10	0,07	0,10		0,08

050, e ,000 tra ,001 e ,050

Infine si è operata una verifica usando,insieme ad altre variabili rilevanti ed in particolare all'Escs medio di istituto ed alla filiera, il tasso di irregolarità nella scuola come regressore a livello scuola. Dalla tab. 2.11a emerge quanto questa variabile sia già incorporata nelle altre già introdotte, soprattutto nell'Escs medio e nella filiera; essa pare avere un effetto negativo (cioè laddove il tasso di irregolarità è è più elevato il punteggio è tendenzialmente più basso) ma molto contenuto in termini di contributo esplicativo autonomo. Infine è da notare come con l'introduzione della variabile relativa al tasso di irregolarità a livello di istituto l'ordine esplicativo emerso dal modello non cambia.

Tabella 2.11 Regressioni individuali con una variabile a livello scuola. Variabile dipendente: Punteggio medio della scuola in scienze. Stima dell'effetto netto dell'irregolarità a livello scuola (N = 18.114)

	Mod 1	Mod 2
R2	0,280	0,284
Liceo	0,252	0,243
Tecnico	0,236	0,250
Escs individuale	0,068	0,069
Escs medio	0,353	0,342
Deviazione standard di Escs medio	-0,023	-0,010
Bocciature		-0,045

Sign ,000

Tabella 2.12 Regressioni individuali con una variabile a livello scuola. Variabile dipendente: Punteggio medio della scuola in scienze. Stima dell'effetto netto dell'irregolarità a livello scuola (N = 18.114) Split per aree geografiche

	Sud	Sud	Centro	Centro	Nord	Nord
	Mod.1	Mod.2	Mod.1	Mod.2	Mod.1	Mod.2
R2	0,314	0,318	0,272	0,273	0,239	0,240
Liceo	0,386	0,392	0,473	0,465	0,517	0,502
Tecnico	0,247	0,254	0,286	0,274	0,360	0,362
Escs individuale	0,066	0,068	0,087	0,087	0,078	0,078
Escs medio	0,281	0,278	0,133	0,128	0,079	0,083
Deviazione standard di Escs medio	0,046	0,058	0,031	0,043	0,010	0,019
Bocciature		-0,006		-0,024		-0,035

Sign ,000

Anche splittando a livello geografico il campione nazionale il quadro esplicativo non cambia con l'introduzione di questa variabile a livello scuola. Quindi, considerato lo scarso contributo esplicativo fornito (l'incremento in termini di R2 è decisamente contenuto), essa non è stata inclusa nei modelli multilivello presentati nel capitolo successivo.

_

⁵ Questa variabile mostra un ulteriore problema legato probabilmente alla rilevazione: usando tale variabile a livello scuola, il numero di casi oggetto d'analisi si riduce in modo consistente a causa della mancate risposte a livello scuola che producono poi una ricaduta sull'uso dei casi individuali (usando come regressore questa variabile si perdono poco meno di 2.000 casi, pari circa al 10% del campione nazionale).

2.2 Regressioni individuali sulle singole aree sovra campionate di studenti delle scuole secondarie superiori

Passando ora ai singoli modelli regionali (Tabb. 2.13 e 2.14), possiamo osservare come i pattern esplicativi emersi dall'analisi per macro-aree (Nord, Centro, Sud) restano sostanzialmente stabili. Nelle regioni del Nord è più forte (nella determinazione dei punteggi) l'effetto filiera mentre nelle regioni del Sud questo si accompagna ad un peso rilevante del background medio nelle scuole.

In tutte le regioni il background individuale mantiene un effetto diretto contenuto; stessa cosa accade per il fattore di genere che mostra un leggero svantaggio per le donne nell'acquisizione dei punteggi in scienza.

La dispersione di Escs nelle scuole ha quasi sempre un effetto di marginale importanza e laddove si manifesti in modo un poco più evidente (Puglia, Bolzano, Emilia Romagna, etc.) non produce cambiamenti nel modello esplicativo fino ad ora osservato.

Anche inserendo nei modelli le variabili motivazionali e relative ai processi di insegnamento curricolare e di apprendimento extracurricolare già precedentemente considerate, resta valido quanto detto fino ad ora. Una descrizione approfondita dei modelli regionali sarà fornita nel paragrafo successivo e nel capitolo relativo all'analisi multilivello.

Tabella 2.13 Determinanti delle competenze in Scienze. Modelli sulle singole aree sovra – campionate

	Basilicata	Sicilia	Piemonte	Sardegna	Emilia Romagna	Puglia	Campania	Veneto	Lombardia	Friuli Venezia Giulia	Liguria	Bolzano	Trento	Media
R2	0,39	0,36	0,35	0,34	0,34	0,32	0,30	0,28	0,25	0,25	0,24	0,20	0,18	0,29
Escs individ.	0,08	0,13	0,09	0,04	0,09	0,07	0,03	0,06	0,08	0,07	0,14	0,03*	-0,0*	0,07
Femmina	-0,08	-0,07	-0,04	-0,11	-0,1*	-0,04	-0,19	-0,07	-0,07	-0,09	-0,0*	-0,15	-0,13	-0,1
Escs medio	0,40	0,21	0,17	0,18	0,03	0,27	0,39	0,23	-0,0*	0,04*	0,0*	0,05	0,19	0,17
D.S. di Escs medio	0,03+	0,04	-0,07	-0,05	0,10	0,15	0,08	-0,08	0,08	0,03+	-0,24	0,17	0,04	0,02
Liceo	0,29	0,46	0,55	0,54	0,62	0,43	0,24	0,42	0,60	0,51	0,56	0,45	0,48	0,47
Tecnico	0,21	0,25	0,30	0,24	0,46	0,24	0,16	0,28	0,32	0,40	0,24	0,34	0,42	0,30

Sign ,000 *sign tra ,001 e ,050 **non sign

Tabella 2.14 Determinanti delle competenze in Scienze. Modelli sulle singole aree sovra campionate

	Basilicata	Sicilia	Emilia Romagna	Puglia	Veneto	Sardegna	Piemonte	Campania	Friuli Venezia Giulia	Lombardia	Liguria	Trento	Bolzano	Media
R2	0,43	0,42	0,41	0,40	0,40	0,40	0,39	0,37	0,35	0,34	0,31	0,28	0,27	0,37
Escs individuale	0,05	0,11	0,07	0,04	0,03	0,0**	0,08	0,02	0,06	0,05	0,11	-0,0*	0,04*	0,05
femmina	-0,08	-0,07	-0,05	-0,04	-0,06	-0,12	-0,05	-0,17	-0,08	-0,08	0,02*	-0,09	-0,11	-0,08
Escs medio	0,42	0,18	0,12	0,28	0,22	0,21	0,19	0,38	0,07	-0,03	-0,0*	0,16	0,05	0,17
Deviazione standard di Escs medio	0,05	0,07	0,08	0,14	-0,07	-0,0*	-0,06	0,09	0,07	0,06	-0,15	0,04*	0,16*	0,04
Liceo	0,23	0,42	0,49	0,37	0,35	0,49	0,49	0,20	0,41	0,54	0,54	0,40	0,37	0,41
Tecnico	0,17	0,20	0,32	0,15	0,20	0,17	0,24	0,10	0,30	0,22	0,21	0,30	0,29	0,22
Piacere per la scienza	0,12	0,12	0,10	0,08	0,16	0,11	0,08	0,14	0,16	0,22	0,14	0,19	0,10	0,13
Interesse per la	0,08	0,06	0,05	0,09	0,06	0,11	0,07	0,02	0,07	0,02	0,11	0,05*	0,06*	0,07
Ore scolastiche di scienze Attività	0,14	0,20	0,23	0,22	0,23	0,14	0,11	0,16	0,20	0,18	0,12	0,19	0,20	0,18
extrascolastiche legate alla scienza	-0,04	-0,05	0,02	0,04	0,04	-0,05	0,01*	0,05	0,05	0,02	0,03	0,02* *	0,02* *	0,01

Sign ,000 *sign tra ,001 e ,050 **non sign

2.3 I Cluster

Per illustrare in modo sintetico i risultati presentati fino ad ora e per poter meglio leggere le differenze tra le regioni, si è optato per una doppia strategia: da un lato abbiamo realizzato una *cluster analysis* usando i beta degli effetti di background e di filiera (Escs individuale, Escs medio della scuola, Deviazione standard di Escs nella scuola, Liceo, Istituto tecnico) e altre due variabili: la prima relativa alla performance media in Scienze nelle singole regioni e l'altra relativa alla dispersione in esse del punteggio in scienze. Da un altro lato abbiamo creato (tramite Acp; vedi allegato) una nuova variabile che sintetizza il *trade-off* tra l'effetto dovuto alla filiera educativa e quello dovuto al background medio.

Dalla cluster (vedi tabelle seguenti) emergono chiaramente tre gruppi che in buona parte riproducono la geografia "fisica" dell'Italia: vi è infatti un primo cluster che include Emilia Romagna, Liguria, Lombardia, Piemonte, un secondo che include Bolzano, Trento, Friuli Venezia Giulia e Veneto ed un terzo che include Basilicata, Campania, Puglia, Sardegna e Sicilia.

Cluster 1 – Emilia Romagna, Liguria, Lombardia, Piemonte

Cluster 2 - Bolzano, Trento, Friuli Venezia Giulia, Veneto

Cluster 3 – Basilicata, Campania, Puglia, Sardegna, Sicilia

I cluster risultano ben caratterizzati (vedere tabelle in allegato) dalle variabili utilizzate per la costruzione e (tranne che nel caso della s.d. dei punteggi) decisamente differenziati tra di loro. Si è quindi proceduto ad effettuare una serie di proiezioni:

- 1. Trade-off fra performance (punteggio in scienze) e disuguaglianze interindividuali (s.d. punteggio in scienze)
- 2. Performance (punteggio in scienze) per effetto netto del Background individuale (Beta standard della variabile Escs_individuale)
- 3. Performance (punteggio in scienze) per effetto netto del Background medio nelle scuole (Beta standard della variabile "Escs medio")
- 4. Performance (punteggio in scienze) per effetto netto del tipo di scuola (Beta standard della variabile "Liceo")
- 5. Performance (punteggio in scienze) per "Effetto tipo di scuola vs. Effetto background medio"
- 6. Disuguaglianze interindividuali (s.d. punteggio in scienze) per effetto netto del Background individuale (Beta standard della variabile Escs individuale)
- 7. Disuguaglianze interindividuali (s.d. punteggio in scienze) per effetto netto del Background medio nelle scuole (Beta standard della variabile "Escs_medio")
- 8. Disuguaglianze interindividuali (s.d. punteggio in scienze) per Effetto tipo di scuola (Beta standard della variabile "Liceo")
- 9. Disuguaglianze interindividuali (s.d. punteggio in scienze) per "Effetto tipo di scuola vs. Effetto background medio"

In ogni grafico il cluster 1 è indicato con un asterisco in verde e i casi che lo compongono (Emilia Romagna, Liguria, Lombardia e Piemonte) con quadrati verdi; il cluster 2 con un asterisco in rosso e i casi che lo compongono (Bolzano, Trento, Friuli Venezia Giulia e Veneto) con quadrati rossi; il cluster 3 con un asterisco in giallo e i casi che lo compongono (Basilicata, Campania, Puglia, Sardegna e Sicilia) con cerchi in giallo.

La prima proiezione (grafico 2.2) mostra chiaramente quanto il principale fattore di discrimine tra Nord e Sud sia il punteggio. In pratica, sotto questo profilo, i cluster 1 e 2 sono abbastanza vicini tra di loro mentre il cluster 3 (quello meridionale) è decisamente distante. Le cose si fanno decisamente meno leggibili quando consideriamo il posizionamento rispetto alla s.d. del punteggio in scienza. In questo caso il dato che emerge in modo chiaro è che il Sud (cluster 3) è caratterizzato da una maggiore eterogeneità interna, scindendosi praticamente in due gruppi (Isole e Regioni continentali).

Emilia_Romagna Sicilia Liguria 90,00 Sardegna cluster1 Piemonte 85,00 Lombardia sd_scienze cluster3 Veneto Friuli_Venezia_Giulia Puglia 80,00 Campania 75,00 Trento 450,00 525,00 425,00 475,00 500,00 550,00 scienze

Grafico 2.2 Trade-off tra performance (punteggio in scienze) e disuguaglianze interindividuali (sd scienze, cioè Deviazione standard punteggio in scienze)

Dal punto di vista della relazione tra performance (punteggio in scienze) ed effetto netto del Background individuale (Beta standard della variabile Escs_individuale) possiamo notate (grafico 2.3) che l'effetto dell'Escs individuale è più forte nel cluster 1 ("Nord Ovest" inclusa l'Emilia Romagna), un po' meno marcato nel cluster meridionale (con la significativa eccezione della Sicilia) ed ancor meno marcato nel cluster 2 (dove a Trento ha un valore prossimo allo zero). All'opposto, nel grafico 2.4, l' effetto netto del Background medio nelle scuole (Beta standard della variabile "Escs_medio") è molto significativo nel cluster meridionale (che in questo caso appare più compatto al suo interno) e meno consistente negli altri due cluster.

Grafico 2.3 Performance (punteggio in scienze) per effetto netto del Background individuale (Beta standard della variabile Escs_individuale)

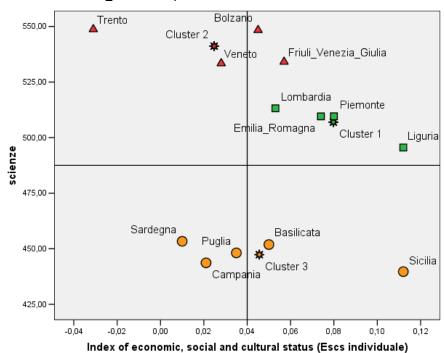
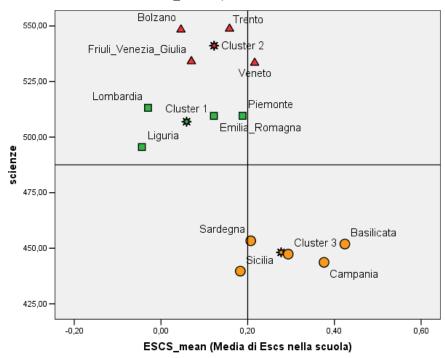
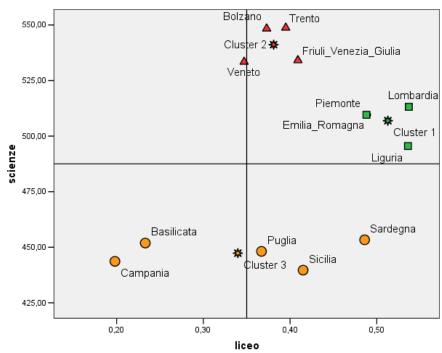




Grafico 2.4 Performance (punteggio in scienze) per effetto netto del Background medio nelle scuole (Beta standard della variabile "Escs_medio")

Dal grafico 2.5, emerge che l'effetto filiera (misurato in questo caso dal Beta standard della variabile "Liceo") sia sensibilmente più forte nei due cluster del Nord, in particolare nel cluster 1, che risultano al loro interno poco differenziati. Nel cluster del Sud tale effetto risulta più contenuto, ma a ben vedere tale scarsa forza dell'effetto filiera è frutto di una compensazione tra i casi in analisi; infatti esso è forte nei casi di Sicilia e Sardegna, debole nei casi di Basilicata e Campania dove era invece apparsa chiara la forza dello background medio.

Grafico 2.5 Performance (punteggio in scienze) per effetto filiera (Beta standard della variabile "Liceo")

Nel grafico 2.6 la variabile "Effetto Filiera vs. Effetto Background medio" fa risaltare queste differenze ed illustra meglio anche le differenze negli altri cluster (soprattutto un maggiore Effetto Background medio per il Veneto nel cluster 2). Probabilmente questo grafico è quello che meglio illustra la differenziazione degli effetti delle scelte scolastiche: la prevalenza del background medio (quindi della composizione sociale delle scuole e dell'auto-selezione delle famiglie tra le diverse scuole) ovvero della filiera. Emergono poi dei casi in cui i due effetti si vanno a combinare in modo abbastanza equilibrato (Sicilia e Sardegna al Sud e Veneto al Nord).

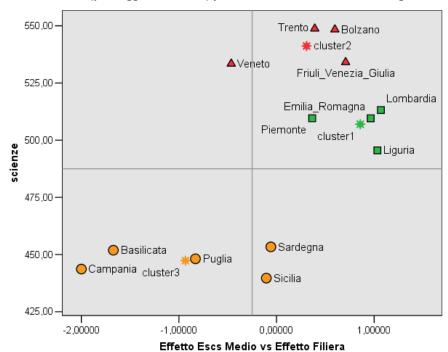


Grafico 2.6 Performance (punteggio in scienze) per "Effetto filiera vs Effetto background medio"

Quando infine passiamo a proiettare la s.d. del punteggio (Graf.2.7 – 2.10) con le altre variabili considerate (Effetto Filiera, Effetto Background medio etc.), come annunciato in precedenza, la lettura si fa meno chiara. Ad esempio, nel caso del grafico su "disuguaglianze interindividuali" (s.d. punteggio in scienze) per effetto netto del Background individuale (Beta standard della variabile Escs individuale)" (Graf.2.7) i cluster Nord-Ovest e Sud (con le eccezioni di Sicilia, Sardegna e Trento) appaiono in pratica sovrapposti (a causa di un basso effetto dell'Escs individuale).

Decisamente più interessante è quanto emerge dal Graf.2.10 su "disuguaglianze interindividuali" (s.d. punteggio in scienze) per "Effetto filiera vs. Effetto Background medio". In questo caso è particolarmente evidente che il cluster 1 (Nord Ovest) sia al suo interno compatto perché caratterizzato da un alto livello di s.d. dei punteggi (quindi da elevata diseguaglianza interindividuale) e da un forte effetto filiera, che il cluster 2 (Nord Est) sia caratterizzato da una bassa s.d. dei punteggi e da un livello dell'effetto filiera leggermente più contenuto (con la significativa eccezione del Veneto dove questo è decisamente più basso) ed infine che il cluster meridionale sia fortemente eterogeneo sia per Effetto Filiera vs. Effetto Background medio che per s.d. dei punteggi.

Grafico 2.7 Disuguaglianze interindividuali (s.d. punteggio in scienze) per effetto netto del Background individuale (Beta standard della variabile Escs_individuale)

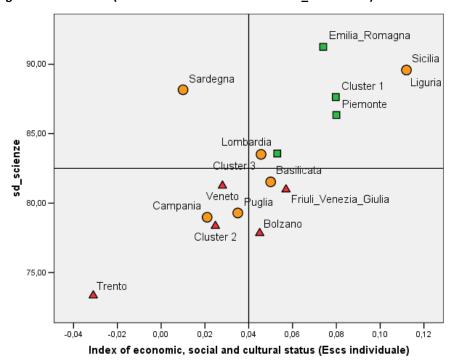


Grafico 2.8 Disuguaglianze interindividuali (s.d. punteggio in scienze) per effetto netto del Background medio nelle scuole (Beta standard della variabile "Escs_medio")

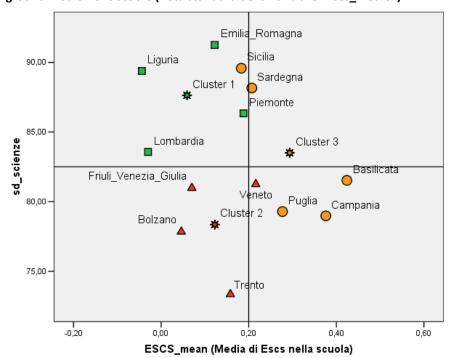


Grafico 2.9 Disuguaglianze interindividuali (s.d. punteggio in scienze) per Effetto Filiera (Beta standard della variabile "Liceo")

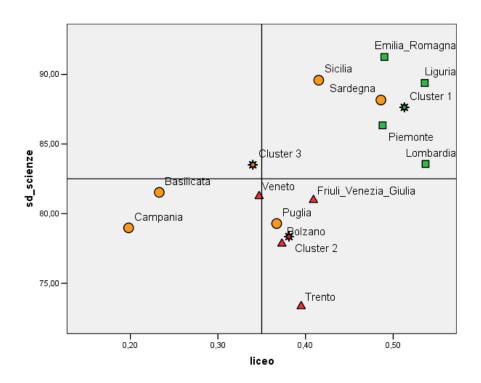
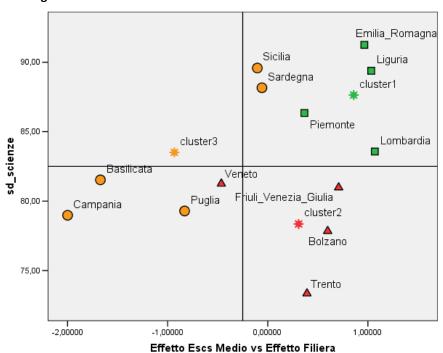



Grafico 2.10 Disuguaglianze interindividuali (s.d. punteggio in scienze) per "Effetto Filiera vs. Effetto Background medio"

3 L'ANALISI MULTILIVELLO: STUDENTI, SCUOLE, REGIONI

Le analisi di regressione lineare semplice fin qui mostrate ci hanno permesso di cogliere il peso delle variabili anagrafiche, sociali, motivazionali e curricolari sugli apprendimenti degli studenti, ora ci proponiamo invece di osservare tali dati inserendoli all'interno degli specifici contesti scolastici e territoriali. I risultati individuali, infatti, non sono da considerarsi indifferenti alle caratteristiche delle scuole (come ad esempio il numero di docenti per studenti, la qualità delle strutture, la pressione esercitata dalle famiglie sulla vita scolastica e così via) e dei territori (ad esempio, la spesa investita in istruzione) e proprio per questo vanno analizzati come dati innestati (nested) in essi. Considerare un livello di aggregazione superiore a quello individuale permette, così, di indagare non solo le prestazioni degli studenti ma anche quelle degli istituti scolastici. L'analisi a più livelli, dunque, benché convergente sui principali risultati ottenuti attraverso i modelli di regressione lineare e già evidenziati, consente, attraverso la scomposizione della varianza, di osservare meglio dove si generano le differenze e ciò, a sua volta, consente di capire meglio dove affrontare i problemi. In ultima analisi, è attraverso questo procedimento, che è possibile ipotizzare i possibili impatti delle politiche dell'equità e dell'efficacia.

L'analisi qui illustrata è un'applicazione del modello multilivello ad intercetta casuale. Parlare di dati strutturati gerarchicamente su diversi livelli significa nel nostro caso parlare di dati relativi alle unità di primo livello (studenti) raggruppate in macro unità di secondo livello (scuole) e di terzo livello (regioni). Ciò implica la possibilità di ipotizzare che queste ultime siano abbastanza indipendenti tra loro e che, al contrario, si verifichi una più stretta associazione tra scuole e tra studenti, in quanto la condivisione dello stesso contesto rende gli studenti appartenenti alla stessa regione e alla stessa scuola più simili tra loro di quanto ci si aspetterebbe dal caso.

La forza di questa dipendenza è misurata dal coefficiente di correlazione intra-classe che può essere stimato utilizzando il più semplice modello lineare gerarchico, quello che nel contesto multilivello è definito "empty model" – qui di seguito "modello nullo" - e che coincide con il modello di analisi della varianza (ANOVA) ad effetti casuali. Nell'equazione che definisce il modello nullo non figurano variabili esplicative e la variabile dipendente risulta uguale alla somma di una media generale (intercetta), un effetto casuale a livello di gruppo (tra le scuole quando l'analisi è a due livelli e tra scuole e regioni quando l'analisi è a tre livelli) e un effetto casuale a livello individuale (nelle scuole). Nel nostro caso la variabile dipendente è costituita dalla media dei cinque valori possibili calcolati per ogni studente nella prova Pisa di scienze del 2006.

Dopo aver esaminato il modello nullo che, come si è detto, permette di calcolare la correlazione tra scuole (cioè la parte di varianza totale attribuibile alle scuole) e/o tra regioni (cioè la parte di varianza totale attribuibile alle regioni), l'analisi sarà approfondita attraverso l'introduzione successiva di nuove variabili sia di primo che di secondo e terzo

livello. In ciascuno dei modelli parziali, saranno considerati: la significatività dei coefficienti delle variabili introdotte; il modificarsi di quelli delle variabili già presenti nei modelli precedenti; la riduzione apportata alla varianza a livello studenti, a livello scuola, a livello regionale e in totale.

In tutti i modelli utilizzati, tutte le variabili saranno considerate ad effetti fissi, ciò implica che i parametri vengono trattati come una intercetta ovvero come se tra le variabili di primo livello e quelle di secondo livello si verificasse sempre lo stesso tipo di associazione. Nella figura 3.2 è riportata la differenza della stima della varianza in un modello con effetti fissi (A) e in un modello con effetti casuali (B) della variabile Escs individuale di primo livello.

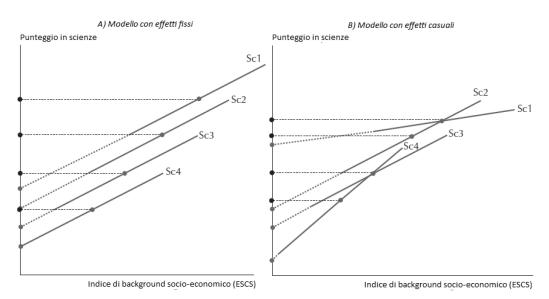


Figura 3.1 Varianza tra le scuole in un modello con effetti fissi e in un modello con effetti casuali

Il procedimento è stato poi replicato per le tredici unità territoriali. Anche in questo caso dunque il punto di partenza è il modello nullo cui segue l'introduzione delle variabili di primo livello e parte delle variabili di secondo livello (Tipo di scuola ed Escs medio).

L'analisi a tre livelli sul campione nazionale è presentata nel paragrafo 3.1 mentre l'analisi a due livelli per l'Italia e le singole regioni sovracampionate è presentata nel paragrafo 3.2.

3.1 L'analisi a tre livelli in Italia

L'analisi condotta sul livello nazionale è sviluppata prendendo in considerazione una struttura a tre livelli: individui, scuole e regioni. Al fine di valutare il peso di ogni singola variabile sulla riduzione della varianza rispetto al modello nullo si presenteranno le stime dei parametri relativi. Per quanto riguarda le stime della varianza, si calcoleranno i seguenti tre coefficienti:

- **1. Coefficiente di correlazione tra le scuole (Varianza inter-scolastica) =** Varianza Between scuole e Within regioni / **Varianza totale** (Within scuole + Between scuole e Within regioni + Between regioni)
- 2. Coefficiente di correlazione tra le regioni (Varianza inter-regionale) = Varianza Between regioni / Varianza totale (Within scuole + Between scuole e Within regioni + Between regioni)
- 3. Coefficiente di correlazione tra scuole e tra regioni (Varianza extra-individuale) = Varianza Between regioni + Between scuole e Within regioni / Varianza totale (Within scuole + Between scuole e Within regioni + Between regioni)

I primi due rappresentano rispettivamente il grado di similarità degli studenti di una stessa scuola rispetto a quelli di altre scuole e il grado di similarità degli studenti di una stessa regione rispetto a quelli di un'altra regione. Un minor valore dei due coefficienti implica quindi una minore diversità interscolastica o inter-regionale delle competenze in scienze degli studenti italiani. Il terzo coefficiente è la somma dei primi due e rileva la parte di variabilità totale che è attribuibile ai due livelli superiori a quello individuale.

Come si può vedere dal modello nullo (Figura 3.1), sul piano nazionale la varianza individuale è pari al 48% della varianza totale, quella non individuale al 52%. Questo secondo valore corrisponde al totale della varianza di secondo e terzo livello, se poi si disaggrega il dato quella *between regioni* risulta pari al 15%, quella *between scuole* al 37%. Nel nostro paese, dunque, le differenze derivanti da fattori contestuali è molto forte e rende particolarmente interessante un'analisi multilivello.

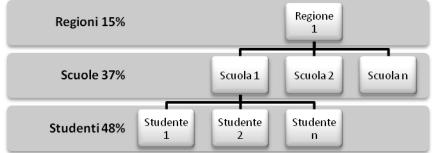


Figura 3.2 Scomposizione della varianza nei tre livelli di strutturazione dei dati. Modello nullo

Nella Tabella 3.1 sono ricapitolate tutte le variabili che man mano si inseriscono ed i relativi modelli, osservando per ciascuno di tali modelli gli scostamenti rispetto al modello nullo (qui modello zero). La tabella è suddivisa in tre blocchi: il primo relativo alla stima dei parametri che riporta il contributo netto (non standardizzato) di ciascuna variabile alla

variazione di punteggio; il secondo relativo alla stima della varianza dei diversi modelli che riporta in valori assoluti la struttura della varianza associata a ciascuno di essi; il terzo, infine, il più significativo, relativo alla stima dei tre coefficienti di correlazione di cui abbiamo parlato all'inizio di questo paragrafo.

L'introduzione prima delle variabili individuali (Escs individuale, Genere, Irregolarità) e poi delle variabili motivazionali, curricolari ed esperienziali non modifica sostanzialmente la struttura generale della varianza (vedansi modelli uno, due e tre).

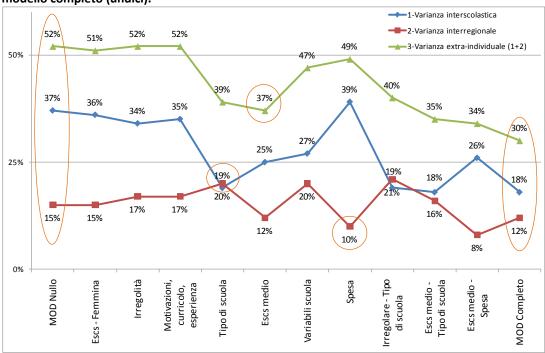
Per quanto riguarda il contributo delle variabili contestuali, invece, un impatto importante sulla riduzione della variabilità non individuale dei punteggi sono deriva dal Tipo di scuola (quello che in precedenza abbiamo chiamato Effetto Filiera) e dall'Escs medio, le quali, introdotte separatamente, fanno scendere la varianza tra le scuole rispettivamente al 39% (MOD 4) e al 37% (MOD5). Il modello a tre livelli ci consente, inoltre, di vedere più chiaramente che il Tipo di scuola spiega solamente la diversità riscontrata nel secondo livello. Nel modello 4, infatti, la varianza di terzo livello non subisce diminuzioni mentre la varianza di secondo livello praticamente si dimezza rispetto al modello nullo passando dal 37% al 19%. L'Escs medio (MOD5), al contrario, ha un potere esplicativo più forte del Tipo di scuola a livello regionale ma agisce, sia pure in misura alquanto più contenuta, anche a livello scuola. Tale variabile, infatti, sempre rispetto al modello nullo, fa scendere il coefficiente di correlazione tra regioni dal 15% al 12%, quello tra le scuole dal 37% al 25% e quello complessivo extra-individuale dal 52% al 37%, valore quest'ultimo che risulta il più basso fra tutti quelli riferibili all'introduzione di variabili singole. A livello scuola agiscono anche le cinque variabili rilevate tramite il questionario somministrato ai dirigenti (MOD6) che nel loro complesso hanno però una rilevanza particolarmente significativa solo per quanto riguarda la varianza inter-scolastica la quale, rispetto al modello nullo, scende dal 37% al 27%. A livello regionale, invece, agisce in maniera molto forte la Spesa regionale per studente, è questo, infatti,il fattore che più di ogni altro ne riduce la variabilità (MOD7: dal 15% al 10%). Tale variabile, comunque, a differenza dell'Escs medio, non interviene anche sul secondo livello.

Nel modello 8, inoltre, possiamo osservare l'interazione tra il tipo di scuola e l'irregolarità. È interessante notare che anche al netto della filiera di scuola secondaria, il ritardo negli studi non vede modificarsi sostanzialmente il suo impatto negativo sui punteggi in scienze, mentre la diminuzione della varianza inter-scolastica rispetto a quella prodotta dal tipo di scuola è minima (dal 19% del modello 4 al 18% del modello 9) perché l'irregolarità assorbe una parte dell'impatto sui punteggi ascrivibile al tipo di scuola (per effetto della debole presenza degli irregolari nella filiera liceale).

Quindi la variabilità non individuale nei punteggi in scienze è da attribuire prevalentemente alla Spesa regionale per studente (che agisce a livello regionale), alla filiera di istruzione secondaria (che agisce a livello scuola) e all'Escs medio che agisce sia a livello regionale sia a livello scuola. I modelli 9 e 10 mostrano l'effetto di Escs medio con queste altre due variabili. Come si può vedere, nel caso dell'interazione di Escs medio con il Tipo di scuola non si ha nessuna modifica a livello regionale (MOD9: 16%) ma la varianza tra le scuole scende al 18%. Nel caso dell'interazione con la Spesa regionale per studente,

invece, la variabilità tra le regioni è dimezzata (MOD10: da 15% a 8%) lasciando al livello scuola la quasi totalità della varianza non individuale (26% su 34%).

Il modello undici, infine, comprende tutte le variabili di primo, secondo e terzo livello. Le variabili introdotte hanno avuto un effetto riduttivo non trascurabile sulla varianza individuale (pari al 17% circa), ma assai più modesta a confronto con quello prodotto sulla varianza extra-individuale (pari al 67% circa).


Tabella 3.1 Modelli trilivello. Variabile indipendente: media 5 punteggi in scienze Pisa 2006

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

In grassetto i valori di stima della varianza e dei modelli che registrano un cambiamento più forte.

Le variazioni nella struttura della varianza, che abbiamo appena discusso, sono sinteticamente riportate nel grafico 3.1. I picchi di maggiore diminuzione della varianza interscolastica, inter-regionale e della somma delle due (totale extra-individuale) che si ottengono considerando una sola variabile per volta sono evidenziati con dei cerchietti. Come già visto, il tipo di scuola ha un effetto particolarmente rilevante sul secondo livello dove la varianza interscolastica scende al 19%, la spesa regionale spiega buona parte delle differenze del terzo livello dove la varianza inter-regionale scende al 10% e, infine, l'Escs medio è la variabile che da sola interviene sulla riduzione della varianza complessiva extra-individuale (che scende al 37%) agendo in maniera congiunta sia sul livello scuola sia sul livello regionale.

Grafico 3.1 Struttura della varianza extra-individuale. Variazioni dal modello nullo (zero) al modello completo (undici).

3.2 L'analisi a due livelli in Italia e nelle singole regioni sovracampionate

Una volta chiarita la strutturazione della variabilità tra i dati a livello nazionale, l'analisi a due livelli ci permette ora di indagare più dettagliatamente le dinamiche all'interno delle 11 regioni e delle 2 province autonome sovra-campionate. Nel confronto tra le regioni si utilizzerà anche il dato aggregato del CENTRO come elemento rappresentativo delle regioni di quell'area di cui non si dispone di dati disgiunti per regioni.

3.2.1 Scomposizione della varianza a due livelli (Il modello nullo per l'Italia e le singole regioni)

A livello internazionale la scomposizione della varianza within e between scuole si presenta in maniera abbastanza differenziata. Come si può vedere dalla tabella di seguito riportata e desunta dal rapporto dell'Ocse (2009), infatti, il coefficiente di correlazione tra le scuole varia dal 60% dell'Ungheria al 6% della Finlandia. L'Italia, con un valore pari al 51%, si presenta come uno dei pochi paesi con una percentuale di varianza tra le scuole superiore a quella nelle scuole.

Tabella 3.2 Scomposizione della varianza. Confronto internazionale. Variabile dipendente: Punteggio in Scienze, PV1

Country	Within-school Variance	Between-school variance	Intra-class correlation
HUN	3461	5450	0,61
NLD	3526	5343	0,60
DEU	4484	5979	0,57
AUT	4487	5418	0,55
FRA	4712	5548	0,54
BEL	4777	5128	0,52
CZE	5069	5576	0,52
ITA	4658	4804	0,51
GRC	5054	4468	0,47
JPN	5327	4769	0,47
SVK	5059	3644	0,42
CHE	5901	3342	0,36
KOR	5354	2882	0,35
PRT	5234	2480	0,32
USA	8530	2611	0,23
GBR	8925	2170	0,20
CAN	7122	1659	0,19
AUS	8263	1793	0,18
IRL	7551	1497	0,17
DNK	7314	1411	0,16
NZL	9702	1913	0,16
ESP	6664	1131	0,15
NOR	8339	948	0,10
ISL	8642	888	0,09
FIN	9598	424	0,06

Fonte: Ocse Pisa

Il dato per l'Italia è confermato anche dalle nostre analisi che prendono in considerazione come variabile dipendente non un solo valore ma la media dei cinque valori di punteggio in scienze. Nella tab. 3.3, infatti, possiamo vedere il valore della varianza scomposta e il coefficiente di correlazione tra scuole che risulta pari al 52%. In questo caso, non tenendosi in considerazione il livello regionale, la totalità della varianza non-individuale viene attribuita a livello scuola.

Coefficiente di correlazione tra le scuole = Varianza inter-scolastica / Varianza totale (Within scuole + Between scuole)

La diversità tra le regioni si riscontra nella variazione del coefficiente di correlazione tra le scuole calcolato attraverso la scomposizione della varianza relativa alle singole regioni.

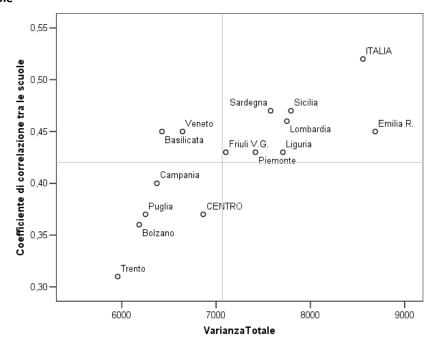
Tabella 3.3 Scomposizione varianza a due livelli, Italia, regioni e provincie sovra-campionate.

SUBNATIO	Intercetta	Within	Between	Varianza totale	Varianza inter- scolastica
Basilicata	450	3533	2893	6426	0,45
Bolzano	542	3956	2227	6184	0,36
Campania	439	3808	2565	6372	0,40
CENTRO	488	2512	4351	6863	0,37
Emilia R.	504	4804	3884	8688	0,45
Friuli V.G.	525	4080	3023	7103	0,43
ITALIA	489	4068	4489	8558	0,52
Liguria	498	4389	3320	7709	0,43
Lombardia	506	4168	3583	7751	0,46
Piemonte	504	4197	3220	7417	0,43
Puglia	450	3928	2322	6251	0,37
Sardegna	448	4041	3537	7578	0,47
Sicilia	433	4114	3680	7794	0,47
Trento	535	4095	1861	5956	0,31
Veneto	529	3647	2997	6644	0,45

Nel complesso, i territori presentano una varianza di entità diversa, che passa da 8688 dell'Emilia Romagna a 5956 di Trento. In nessun regione o provincia la varianza interscolastica raggiunge o supera il 50% della varianza totale, come accade invece a livello nazionale, e ciò per l'ovvia ragione che a quest'ultimo livello pesano anche le differenze fra macro-aree e fra regioni. Per il medesimo motivo le due province autonome (Trento e Bolzano) presentano dei valori particolarmente bassi.

Le regioni dove la varianza inter-scolastica è minore sono Puglia, Campania, Bolzano e Trento (tra 30% e 40%) mentre quelle dove è maggiore sono Sicilia, Lombardia e Sardegna (superiore a 46%). In queste ultime quindi la differenza tra le scuole rispetto ai punteggi medi degli studenti è più forte: per fare un esempio, in Sicilia, Sardegna e Lombardia gli studenti all'interno di una stessa scuola ottengono punteggi in scienze meno simili tra loro che in regioni come la Puglia in cui gli studenti delle diverse scuole hanno un più alto grado di omogeneità. A Sicilia e Sardegna, nel Sud, si avvicina la Basilicata (con il suo 45% di

varianza inter-scuole) ma nel loro caso, diversamente che in quello della Basilicata, della Puglia e della Campania, si registra anche un'alta varianza totale.


Nel grafico che segue possiamo vedere la distribuzione delle regioni in base alla varianza totale e alla parte di essa attribuibile al livello scuola. Bolzano, Trento, Puglia e Campania si trovano nel quadrante definito da una bassa varianza totale e una bassa varianza tra scuole. Basilicata, Veneto e Friuli Venezia Giulia si trovano nel quadrante definito da una bassa varianza totale e un'alta varianza tra scuole. Sardegna, Sicilia, Lombardia, Liguria, Piemonte, Emilia Romagna si trovano invece nel quadrante definito da un'alta varianza totale e un'alta varianza tra scuole.

Quanto alla varianza totale, si possono individuare (grafico 3.2):

- Due Sud (continentale e insulare) e questa divaricazione si verifica anche (ad eccezione della Basilicata) nella quota imputabile alla varianza tra le scuole;
- Due Nord (Triveneto e altre regioni del Nord), in questo caso, però, tutto il Nord, tranne Trento e Bolzano, presenta una'elevata quota di varianza tra le scuole.

Infine, è possibile osservare una relazione abbastanza lineare tra la varianza totale e la quota di varianza *between*. Dove quella totale è più alta, è più alta anche la varianza *between*.

Grafico 3.2 Distribuzione delle regioni per livello di varianza totale e coefficiente di correlazione tra le scuole

Per quanto riguarda la performance in scienze, possiamo vedere, come già emerso più volte nei capitoli precedenti, non già una quadri-partizione bensì una netta bipartizione tra Nord e Sud: le regioni settentrionali riportano un punteggio medio superiore al valore nazionale mentre le regioni meridionali ed insulari presentano un punteggio decisamente inferiore.

Nel grafico che segue (3.3) si osserva la distribuzione delle regioni per il punteggio medio e la correlazione intra-classe. Il grafico chiarisce meglio la rappresentazione finora data delle differenze tra le regioni. Come possiamo vedere, infatti, Trento e Bolzano si distinguono da tutte le altre unità territoriali perché hanno alti punteggi e bassa varianza inter-scolastica. Puglia e Campania presentano una varianza inter-scolastica inferiore alla media delle regioni ma, come le altre regioni del Sud, si distinguono per performance in scienze molto basse. Le regioni del Nord, si distribuiscono in tre gruppi: Trento e Bolzano caratterizzate da performance eccellenti e basse disuguaglianze tra le scuole, Veneto e Friuli caratterizzate da performance eccellenti ma alta variazione interna e il resto delle regioni del nord, caratterizzate da buone performance e alta variazione interna.

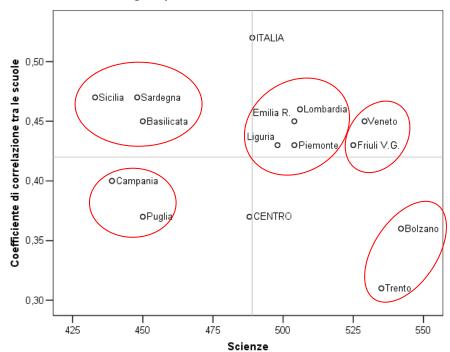


Grafico 3.3 Distribuzione delle regioni per media in scienze e la varianza inter-scolastica

3.2.2 L'analisi a due livelli per le regioni sovra-campionate

Portiamo ora la nostra analisi all'interno delle singole regioni. Come precedentemente, si parte dal modello nullo e si introducono successivamente altri quattro modelli che in questo caso tuttavia sono cumulativi, nel senso che ogni modello include anche le variabili utilizzate in quelli antecedenti. Nelle specifiche tabelle riferite a ciascuna regione (da 3.4 a 3.17) si riportano il valore dell'intercetta, i coefficienti di tutte le variabili a livello individuale (Escs individuale, Genere, Irregolarità e le quattro variabili - motivazionali, curriculari ed esperienziali - da noi selezionate) e di due a livello scuola (Escs medio e Tipo di scuola). I modelli con le altre variabili di secondo livello non sono stati riportati perché nell'insieme mostravano bassi o insufficienti gradi di significatività. Si riportano inoltre i valori assoluti della varianza between e within e il coefficiente di correlazione intra-classe, cioè l'incidenza della varianza inter-scolastica sulla varianza totale. Come stima dei modelli viene riportata la riduzione percentuale della varianza between, within e totale ottenuta in ogni modello rispetto al modello nullo.

- Riduzione between = 1- (Varianza Between scuole MOD_n / Varianza Between scuole MOD_n)
- Riduzione Within = 1- (Varianza Within scuole MOD_n / Varianza Within scuole MOD₀)
- **3. Riduzione Totale** = 1- (Varianza Totale MOD_n / Varianza Totale MOD_0)

I valori sono riportati in una tabella per ciascuna regione, anche se non ci soffermeremo nei dettagli singoli ma si presenterà un quadro complessivo.

Tabella 3.4

BASILICATA	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	450	463	433	383	428,9
FEMMINA		-13,9	-16,5	-17,5	-17,5
Escs		7,0	4,6	4,2	3,4**
IRREGOLARE		-41,8	-37,7	-36,9	-36,1
Interesse per la scienza			6,4	6,2	5,9
Piacere nello studio della scienza			10,4	10,4	10,4
Ore scolastiche di scienze			10,2	9,9	10,1
Attività extrascolastiche sulle scienze			-2,0*	-2,0	-2,0*
LICEO				95,2	38,8
TECNICO				43,8	22,8
Escs medio					67,5
Varianza nelle scuole	3533	3309	3096	3094	3094
Varianza tra le scuole	2893	2364	2268	877	497
Varianza totale	6426	5673	5364	3972	3591
Coefficiente di correlazione tra le scuole	0,45	0,42	0,42	0,22	0,14
Riduzione Within		6,3%	12,4%	12,4%	12,4%
Riduzione Between		18,3%	21,6%	69,7%	82,8%
Riduzione totale		11,7%	16,5%	38,2%	44,1%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.5

BOLZANO	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	542	563	521	487	494
FEMMINA		-21,0	-20,4	-20,7	-20,4
Escs		6,1	5,8	5,4	5,1
IRREGOLARE		-45,5	-45,4	-44,6	-44,6
Interesse per la scienza			8,4	8,2	8,2
Piacere nello studio della scienza			7,8	7,6	7,6
Ore scolastiche di scienze			12,5	12,5	12,5
Attività extrascolastiche sulle scienze			-0,1*	-0,1	0,0*
LICEO				48,8	33,6
TECNICO				32,3	26,9**
Escs medio					28,9*
Varianza nelle scuole	3956	3595	3257	3257	3257
Varianza tra le scuole	2227	1872	1459	1145	1096
Varianza totale	6184	5466	4716	4402	4353
Coefficiente di correlazione tra le scuole	0,36	0,34	0,31	0,26	0,25
Riduzione Within		9,1%	17,7%	17,7%	17,7%
Riduzione Between		16,0%	34,5%	48,6%	50,8%
Riduzione totale		11,6%	23,7%	28,8%	29,6%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.6

CAMPANIA	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	439	456	421	376	417
FEMMINA		-23,9	-22,9	-24,3	-24,2
Escs		3,1**	2,0*	1,4*	0,7*
IRREGOLARE		-38,4	-33,9	-33,3	-33,5
Interesse per la scienza			0,2*	-0,1*	0,1*
Piacere nello studio della scienza			16,0	15,9	15,8
Ore scolastiche di scienze			11,6	11,5	11,3
Attività extrascolastiche sulle scienze			2,8*	3,1*	3,2*
LICEO				79,1	23,8*
TECNICO				36,5	15,2*
Escs medio					60,0
Varianza nelle scuole	3808	3572	3094	3093	3094
Varianza tra le scuole	2565	2170	1938	898	582
Varianza totale	6372	5741	5031	3991	3676
Coefficiente di correlazione tra le scuole	0,40	0,38	0,39	0,23	0,16
Riduzione Within		6,2%	18,8%	18,8%	18,7%
Riduzione Between		15,4%	24,5%	65,0%	77,3%
Riduzione totale		9,9%	21,0%	37,4%	42,3%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.7

EMILIA R.	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	504	518	482	415	424
FEMMINA		-12,7	-11,0	-10,9	-11,2
Escs		8,3	6,6	5,5	5,0
IRREGOLARE		-57,1	-51,0	-49,8	-49,7
Interesse per la scienza			7,6	7,5	7,5
Piacere nello studio della scienza			10,8	10,6	10,6
Ore scolastiche di scienze			12,0	12,5	12,7
Attività extrascolastiche sulle scienze			1,0*	1,2*	1,2*
LICEO				114,1	90,1
TECNICO				65,4	54,1
Escs medio					21,1*
Varianza nelle scuole	4804	4413	3997	4003	4006
Varianza tra le scuole	3884	2883	2493	474	435
Varianza totale	8688	7296	6490	4477	4440
Coefficiente di correlazione tra le scuole	0,45	0,40	0,38	0,11	0,10
Riduzione Within		8,1%	16,8%	16,7%	16,6%
Riduzione Between		25,8%	35,8%	87,8%	88,8%
Riduzione totale		16,0%	25,3%	48,5%	48,9%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.8

FRIULI V.G.	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	525	539	509	463	463
FEMMINA		-12,7	-13,5	-14,5	-14,5
Escs		7,5	6,4	5,1	5,1
IRREGOLARE		-37,0	-35,4	-34,7	-34,7
Interesse per la scienza			7,3	6,6	6,6
Piacere nello studio della scienza			13,1	13,3	13,3
Ore scolastiche di scienze			10,6	11,0	11,0
Attività extrascolastiche sulle scienze			1,8*	2,0*	2,0*
LICEO				74,7	74,4
TECNICO				43,5	43,4
Escs medio					0,4*
Varianza nelle scuole	4080	3869	3461	3465	3465
Varianza tra le scuole	3023	2253	1650	730	729
Varianza totale	7103	6122	5111	4195	4194
Coefficiente di correlazione tra le scuole	0,43	0,37	0,32	0,17	0,17
Riduzione Within		5,2%	15,2%	15,1%	15,1%
Riduzione Between		25,5%	45,4%	75,9%	75,9%
Riduzione totale		13,8%	28,0%	40,9%	40,9%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.9

LIGURIA	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	498	512	481	428	424
FEMMINA		-16,7	-18,1	-18,5	-18,5
Escs		10,1	8,9	7,8	8,1
IRREGOLARE		-47,5	-47,2	-46,6	-46,7
Interesse per la scienza			4,2*	4,1*	4,2*
Piacere nello studio della scienza			14,1	14,0	14,0
Ore scolastiche di scienze			11,8	12,0	11,9
Attività extrascolastiche sulle scienze			0,4*	0,6*	0,5*
LICEO				86,8	100,5
TECNICO				41,4	44,1
Escs medio					-17,3*
Varianza nelle scuole	4389	4034	3611	3610	3610
Varianza tra le scuole	3320	2548	2207	1018	991
Varianza totale	7709	6582	5818	4628	4601
Coefficiente di correlazione tra le scuole	0,43	0,39	0,38	0,22	0,22
Riduzione Within		8,1%	17,7%	17,7%	17,7%
Riduzione Between		23,3%	33,5%	69,3%	70,1%
Riduzione totale		14,6%	24,5%	40,0%	40,3%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.10

LOMBARDIA	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	506	521	495	443	431
FEMMINA		-12,4	-13,7	-14,3	-14,4
Escs		5,6	3,9**	3,0*	3,3*
IRREGOLARE		-52,6	-51,0	-50,4	-50,4
Interesse per la scienza			1,9*	1,6*	1,7*
Piacere nello studio della scienza			19,6	19,4	19,5
Ore scolastiche di scienze			8,9	9,0	9,0
Attività extrascolastiche sulle scienze			3,4*	3,3*	3,4*
LICEO				94,7	116,2
TECNICO				45,1	52,8
Escs medio					-25,2*
Varianza nelle scuole	4168	3760	3338	3342	3340
Varianza tra le scuole	3583	3133	2853	1419	1391
Varianza totale	7751	6892	6191	4761	4731
Coefficiente di correlazione tra le scuole	0,46	0,45	0,46	0,30	0,29
Riduzione Within		9,8%	19,9%	19,8%	19,9%
Riduzione Between		12,6%	20,4%	60,4%	61,2%
Riduzione totale		11,1%	20,1%	38,6%	39,0%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.11

PIEMONTE	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	504	518	490	436	447
FEMMINA		-8,3	-9,8	-10,8	-10,5
Escs		8,0	6,9	6,1	5,5
IRREGOLARE		-52,4	-49,6	-48,4	-48,4
Interesse per la scienza			6,5*	6,4	6,4
Piacere nello studio della scienza			7,1	6,8	6,7
Ore scolastiche di scienze			9,4	9,1	9,2
Attività extrascolastiche sulle scienze			3,0*	2,7*	2,7*
LICEO				97,9	72,4
TECNICO				43,3	37,1
Escs medio					26,1
Varianza nelle scuole	4197	3803	3468	3467	3467
Varianza tra le scuole	3220	2304	2129	672	612
Varianza totale	7417	6107	5597	4139	4079
Coefficiente di correlazione tra le scuole	0,43	0,38	0,38	0,16	0,15
Riduzione Within		9,4%	17,4%	17,4%	17,4%
Riduzione Between		28,5%	33,9%	79,1%	81,0%
Riduzione totale		17,7%	24,5%	44,2%	45,0%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.12

PUGLIA	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	450	460	412	365	393
FEMMINA		-6,7**	-8,0	-10,3	-9,9
Escs		4,4	1,6*	1,2*	0,2*
IRREGOLARE		-49,5	-44,0	-42,6	-42,4
Interesse per la scienza			9,1	8,8	8,7
Piacere nello studio della scienza			5,6	5,5	5,5
Ore scolastiche di scienze			15,2	14,8	14,8
Attività extrascolastiche sulle scienze			4,7	5,0	4,9
LICEO				89,2	59,4
TECNICO				35,5	23,0
Escs medio					36,7
Varianza nelle scuole	3928	3677	3168	3169	3168
Varianza tra le scuole	2322	1963	1798	467	333
Varianza totale	6251	5640	4966	3636	3502
Coefficiente di correlazione tra le scuole	0,37	0,35	0,36	0,13	0,10
Riduzione Within		6,4%	19,4%	19,3%	19,3%
Riduzione Between		15,5%	22,6%	79,9%	85,6%
Riduzione totale		9,8%	20,6%	41,8%	44,0%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.13

SARDEGNA	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	448	468	434	379	395
FEMMINA		-12,8	-14,0	-16,0	-16,0
Escs		4,5	2,6*	1,5*	1,1*
IRREGOLARE		-50,8	-40,9	-40,3	-40,2
Interesse per la scienza			5,5	5,8	5,8
Piacere nello studio della scienza			9,3	9,1	9,1
Ore scolastiche di scienze			12,4	12,5	12,5
Attività extrascolastiche sulle scienze			-0,5*	-1,1*	-1,1*
LICEO				104,9	82,4
TECNICO				29,1	23,7**
Escs medio					21,1*
Varianza nelle scuole	4041	3639	3285	3284	3285
Varianza tra le scuole	3537	2720	2793	948	901
Varianza totale	7578	6359	6078	4232	4185
Coefficiente di correlazione tra le scuole	0,47	0,43	0,46	0,22	0,22
Riduzione Within		9,9%	18,7%	18,7%	18,7%
Riduzione Between		23,1%	21,0%	73,2%	74,5%
Riduzione totale		16,1%	19,8%	44,2%	44,8%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.14

SICILIA	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	433	448	414	364	388
FEMMINA		-13,2	-13,0	-13,7	-13,5
Escs		9,7	8,7	8,2	7,6
IRREGOLARE		-50,5	-43,0	-42,0	-42,1
Interesse per la scienza			6,5	6,2	6,3
Piacere nello studio della scienza			12,5	12,5	12,4
Ore scolastiche di scienze			10,2	10,1	10,0
Attività extrascolastiche sulle scienze			-4,0*	-4,0*	-4,1**
LICEO				90,6	58,0
TECNICO				38,8	34,2
Escs medio					39,6
Varianza nelle scuole	4114	3734	3443	3448	3446
Varianza tra le scuole	3680	2883	2578	1115	942
Varianza totale	7794	6617	6021	4563	4388
Coefficiente di correlazione tra le scuole	0,47	0,44	0,43	0,24	0,21
Riduzione Within		9,2%	16,3%	16,2%	16,2%
Riduzione Between		21,6%	29,9%	69,7%	74,4%
Riduzione totale		15,1%	22,7%	41,5%	43,7%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.15

TRENTO	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	535	546	502	454	472
FEMMINA		-9,7	-4,9*	-5,9*	-6,0*
Escs		-1,5*	-4,1**	-4,8	-5,7
IRREGOLARE		-44,2	-46,2	-45,2	-45,2
Interesse per la scienza			3,4*	3,2*	3,1*
Piacere nello studio della scienza			15,5	15,4	15,4
Ore scolastiche di scienze			13,3	13,0	13,1
Attività extrascolastiche sulle scienze			1,8*	1,7*	1,6*
LICEO				74,1	41,4
TECNICO				47,5	35,6
Escs medio					42,7
Varianza nelle scuole	4095	3883	3365	3361	3361
Varianza tra le scuole	1861	1658	1201	548	426
Varianza totale	5956	5541	4566	3908	3787
Coefficiente di correlazione tra le scuole	0,31	0,30	0,26	0,14	0,11
Riduzione Within		5,2%	17,8%	17,9%	17,9%
Riduzione Between		10,9%	35,5%	70,6%	77,1%
Riduzione totale		7,0%	23,3%	34,4%	36,4%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.16

VENETO	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	529	543	503	455	463
FEMMINA		-11,3	-11,7	-11,9	-11,7
Escs		5,5	3,1**	2,6*	2,3*
IRREGOLARE		-54,5	-47,9	-47,6	-47,4
Interesse per la scienza			4,5**	4,3**	4,4**
Piacere nello studio della scienza			11,2	11,2	11,2
Ore scolastiche di scienze			11,7	11,7	11,7
Attività extrascolastiche sulle scienze			5,7	5,6	5,5
LICEO				79,1	58,9
TECNICO				47,8	42,3
Escs medio					24,6**
Varianza nelle scuole	3647	3242	2858	2859	2860
Varianza tra le scuole	2997	2481	1930	998	934
Varianza totale	6644	5723	4788	3857	3794
Coefficiente di correlazione tra le scuole	0,45	0,43	0,40	0,26	0,25
Riduzione Within		11,1%	21,6%	21,6%	21,6%
Riduzione Between		17,2%	35,6%	66,7%	68,8%
Riduzione totale		13,9%	27,9%	41,9%	42,9%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Tabella 3.17

CENTRO	MOD0	MOD1	MOD2	MOD3	MOD4
Intercetta	488	498	471	414	422,1
FEMMINA		-16,6	-17,3	-18,1	-18,2
Escs		7,6	7,5	6,5	6,1
IRREGOLARE		-28,7	-23,2	-21,4	-21,4
Interesse per la scienza			8,9	8,5	8,5
Piacere nello studio della scienza			9,6	10,2	10,0
Ore scolastiche di scienze			8,4	7,7	7,7
Attività extrascolastiche sulle scienze			-0,5*	-0,4*	-0,4*
LICEO				94,1	75,5
TECNICO				49,6	41,1
Escs medio					22,9*
Varianza nelle scuole	4351	4197	3811	3810	3810
Varianza tra le scuole	2512	2180	2057	706	665
Varianza totale	6863	6377	5867	4515	4475
Coefficiente di correlazione tra le scuole	0,37	0,34	0,35	0,16	0,15
Riduzione Within		3,5%	12,4%	12,4%	12,4%
Riduzione Between		13,2%	18,1%	71,9%	73,5%
Riduzione totale		7,1%	14,5%	34,2%	34,8%

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

LA VARIANZA TRA LE SCUOLE

Il primo elemento da mettere in luce è quello relativo alla riduzione della varianza between e dei coefficienti di correlazione tra le scuole, questi ultimi riportati sinteticamente nella tabella successiva. In primo luogo, possiamo vedere nella tabella 3.18 che in tutti i contesti territoriali, come per l'Italia nel suo complesso, sono le due variabili di secondo livello (Tipo di scuola ed Escs medio) che riducono buona parte della varianza inter-scolastica.

Si introduce per prima la variabile Tipo di scuola (modello 3) e dopo la variabile Escs medio (modello 4). La riduzione più forte è quella che avviene passando dal modello 2, comprensivo delle sole variabili individuali, al modello 3. Ciò è vero in modo particolare per Emilia Romagna (-73%), Puglia (-68%), Piemonte (-61%), Sardegna (-51%) e Trento (-50%). Tuttavia, per alcune regioni anche il passaggio dal modello 3 al modello 4 produce una ulteriore e consistente riduzione della varianza. È questo il caso in particolare della Basilicata (-39%), della Campania (-30%), della Puglia (-25%) e di Trento (-21%).

Tabella 3.18 Coefficienti di correlazione intra-classe nell'analisi multilivello

Coefficiente di	NULLO	MOD1	MOD2	MOD3	MOD4	Da	Da	Riduzio
correlazione tra le						MOD2 a	MOD3 a	ne da
scuole						MOD3:	MOD4:	MOD0 a
						effetto	effetto	MOD4:
						Tipo di	Escs	riduzion
						scuola	medio	e totale
Basilicata	0,45	0,42	0,42	0,22	0,14	47,8%	37,3%	69,2%
Bolzano	0,36	0,34	0,31	0,26	0,25	15,9%	3,2%	30,1%
Campania	0,40	0,38	0,39	0,23	0,16	41,6%	29,7%	60,7%
Emilia R.	0,45	0,40	0,38	0,11	0,10	72,4%	7,5%	78,1%
Friuli V.G.	0,43	0,37	0,32	0,17	0,17	46,1%	0,0%	59,1%
Liguria	0,43	0,39	0,38	0,22	0,22	42,0%	2,0%	50,0%
Lombardia	0,46	0,45	0,46	0,30	0,29	35,3%	1,4%	36,4%
Piemonte	0,43	0,38	0,38	0,16	0,15	57,3%	7,5%	65,4%
Puglia	0,37	0,35	0,36	0,13	0,10	64,5%	25,9%	74,4%
Sardegna	0,47	0,43	0,46	0,22	0,22	51,3%	3,9%	53,9%
Sicilia	0,47	0,44	0,43	0,24	0,21	42,9%	12,1%	54,5%
Trento	0,31	0,30	0,26	0,14	0,11	46,7%	19,7%	64,0%
Veneto	0,45	0,43	0,40	0,26	0,25	35,8%	4,8%	45,4%
CENTRO	0,37	0,34	0,35	0,16	0,15	55,4%	4,8%	59,4%
ITALIA	0,52	0,51	0,51	0,41	0,36	20,0%	12,4%	31,5%

La lettura complessiva dell'effetto di queste due variabili, visibile nel grafico 3.4, lascia supporre la presenza di diversi modelli di configurazione delle disuguaglianze fra le scuole nel nostro sistema educativo. Le regioni possono essere così raggruppate:

- Puglia, Basilicata e Campania in cui si registra un forte effetto sia dell'Escs medio sia del Tipo di scuola. Esse si presentano come le regioni meno egualitarie in quanto in esse le scuole si distinguono tanto per la filiera di istruzione (in maniera più marcata la Puglia) quanto per la composizione ed il prestigio sociale delle singole scuole (in maniera più marcata Basilicata e Campania).
- Trento: Medio effetto di entrambe le variabili.

- Emilia Romagna e Piemonte ma anche Sicilia e Sardegna: Forte effetto Tipo di scuola e lieve effetto Escs medio. In queste regioni le disuguaglianze si producono prevalentemente attraverso la scelta della filiera educativa. La macro area CENTRO può essere assimilata a questo modello;
- Friuli Venezia Giulia, Lombardia, Liguria: Medio effetto del Tipo di scuola e nessun effetto dell'Escs medio. Queste regioni, come le precedenti, mostrano una prevalenza dell'effetto della filiera educativa sulla composizione ed il prestigio sociale delle scuole, anche se di minore intensità. A differenza delle altre regioni però l'aggiunta dell'Escs medio non diminuisce di alcun punto il valore della varianza tra le scuole.
- Bolzano e Veneto: Lieve effetto di entrambe le variabili. Bolzano in particolare sembra l'unico caso in cui le disuguaglianze esistenti tra le scuole appaiono minori per il minor impatto sia dell'una sia dell'altra variabile.

E' interessante notare, inoltre, che il dato nazionale sembra avvicinarsi a questo ultimo modello, il meno inegualitario, a dimostrazione del fatto che un'analisi limitata a quel livello non cattura in misura adeguata le disuguaglianze esistenti nel nostro paese. Facendo entrare in gioco altre fonti di varianza legate al territorio, l'analisi nazionale finisce inevitabilmente per ridurre il peso delle variabili da noi qui considerate.

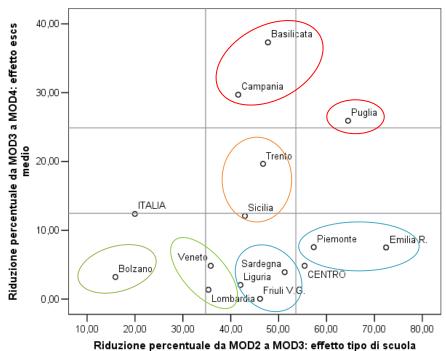


Grafico 3.4 Distribuzione delle regioni per effetto del tipo di scuola e di escs medio

L'ESCS INDIVDIDUALE

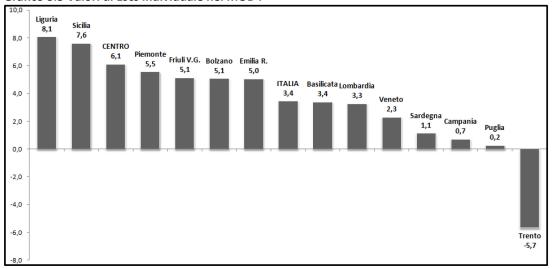

Per quanto riguarda l'indice Escs individuale, introdotto nel modello 1 possiamo vedere che le regioni in cui il valore è più alto sono Liguria, Sicilia, Piemonte ed Emilia Romagna e Friuli V.G. (9 punti in più per ogni livello di Escs). Esso è medio in Basilicata, Bolzano, Lombardia e Veneto (6-7 punti) e più basso in Sardegna, Puglia e Campania (5 punti o meno). Presenta un valore non significativo nella Provincia di Trento. Nei modelli successivi la forza di questa variabile varia nelle singole regioni. In alcune essa diviene non significativa a seguito dell'introduzione delle variabili motivazionali, curriculari ed esperienziali, come in Sardegna, Campania e Puglia, mentre nelle altre regioni diminuisce consistentemente.

Tabella 3.19 Stima della variabile Escs individuale, introdotta nel modello 1

ESCS	MOD1 ESCS + FEMMINA + IRREGOLARE	MOD2 ESCS + FEMMINA + IRREGOLARE + FARE SCIENZA	MOD3 ESCS + FEMMINA + IRREGOLARE + FARE SCIENZA + TIPO SCUOLA	MOD4 ESCS + FEMMINA + IRREGOLARE +FARE SCIENZA+TIPO SCUOLA+ESCS MEDIO
Basilicata	7,0	4,6	4,2	3,4**
Bolzano	6,1	5,8	5,4	5,1
Campania	3,1**	2,0*	1,4*	0,7*
Emilia R.	8,3	6,6	5,5	5,0
Friuli V.G.	7,5	6,4	5,1	5,1
Liguria	10,1	8,9	7,8	8,1
Lombardia	5,6	3,9**	3,0*	3,3*
Piemonte	8,0	6,9	6,1	5,5
Puglia	4,4	1,6*	1,2*	0,2*
Sardegna	4,5	2,6*	1,5*	1,1*
Sicilia	9,7	8,7	8,2	7,6
Trento	-1,5*	-4,1**	-4,8	-5,7
Veneto	5,5	3,1**	2,6*	2,3*
CENTRO	7,6	7,5	6,5	6,1
ITALIA	6,0	4,4	4,0	3,4

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Grafico 3.5 Valori di Escs individuale nel MOD4

IL GENERE

Per quanto riguarda il Genere, possiamo vedere che in tutte le regioni esso assume un valore negativo in quanto si assumono i maschi come categoria di riferimento. Le regioni con differenze tra maschi e femmine più marcate sono Campania (in cui il valore è decisamente più elevato: -23,1), Bolzano, Liguria, Basilicata (regioni in cui le donne ottengono circa 15 punti in meno degli uomini). Le regioni con differenze meno marcate sono Puglia, Piemonte, Veneto, Trento e Lombardia, dove tra l'altro il valore registrato risulta non significativo.

Come già osservato per il modello nazionale, con l'introduzione delle variabili motivazionali, curricolari ed esperienziali e sul tipo di scuola (MOD3), l'incidenza della variabile genere viene parzialmente ridotta in tutte le regioni.

Tabella 3.20 Stima della variabile GENERE (FEMMINA), introdotta nel modello 1

	ia aciia variabiie GEIVE	•	MOD3	MOD4
GENERE	MOD1 ESCS + FEMMINA + IRREGOLARE	MOD2 ESCS + FEMMINA + IRREGOLARE + FARE SCIENZA	ESCS + FEMMINA + IRREGOLARE + FARE SCIENZA + TIPO SCUOLA	ESCS + FEMMINA + IRREGOLARE +FARE SCIENZA+TIPO SCUOLA+ESCS MEDIO
Basilicata	-13,9	-16,5	-17,5	-17,5
Bolzano	-21,0	-20,4	-20,7	-20,4
Campania	-23,9	-22,9	-24,3	-24,2
Emilia R.	-12,7	-11,0	-10,9	-11,2
Friuli V.G.	-12,7	-13,5	-14,5	-14,5
Liguria	-16,7	-18,1	-18,5	-18,5
Lombardia	-12,4	-13,7	-14,3	-14,4
Piemonte	-8,3	-9,8	-10,8	-10,5
Puglia	-6,7**	-8,0	-10,3	-9,9
Sardegna	-12,8	-14,0	-16,0	-16,0
Sicilia	-13,2	-13,0	-13,7	-13,5
Trento	-9,7	-4,9*	-5,9*	-6,0*
Veneto	-11,3	-11,7	-11,9	-11,7
CENTRO	-16,6	-17,3	-18,1	-18,2
ITALIA	-13,6	-13,9	-14,4	-14,2

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

IL TIPO DI SCUOLA

Per quanto riguarda il Tipo di scuola, possiamo vedere che i punteggi medi dei liceali sono di gran lunga più elevati di quelli sia del tecnico che del professionale (categoria di riferimento). Le regioni in cui i liceali ottengono punteggi relativamente più alti (MOD3) sono Sardegna, Emilia Romagna, Piemonte, Liguria e Lombardia (100 punti e più). Il caso in cui lo scarto è minore è Bolzano (59 punti). Nelle altre regioni il valore è compreso tra 80 e 100. Una graduatoria in parte simile si ritrova per gli studenti degli istituti tecnici: le regioni con gli scarti più alti sono Emilia Romagna (70) e Trento (56); quelle con gli scarti più bassi sono Bolzano (36), Sardegna (36), Campania (37) e Puglia (37).

I valori del tipo di scuola diminuiscono con l'introduzione dell'Escs medio (MOD4) che, come abbiamo affermato precedentemente, gioca anche esso un ruolo di primo piano nel determinare le disuguaglianze tra le scuole. Sicilia, Basilicata e Campania sono le regioni in

cui nel passaggio dal modello 3 al modello 4 si determina un avvicinamento più rilevante dei valori ottenuti dai liceali rispetto ai tecnici. Al contrario, le differenze tra liceo e tecnico si accentuano in Liguria, Lombardia, Friuli e Puglia.

Tabella 3.21 Stima della variabile Tipo di scuola (LICEO, TECNICO), introdotta nel modello 3

10001100123	- Jenna acha variabile	ripo di scaola (Elezo)	recitios // microdotta	iici iiicuciic s
	MOD3	MOD4	MOD3	MOD4
	ESCS + FEMMINA +	ESCS + FEMMINA +	ESCS + FEMMINA +	ESCS + FEMMINA +
	IRREGOLARE + FARE	IRREGOLARE +FARE	IRREGOLARE + FARE	IRREGOLARE +FARE
	SCIENZA + TIPO	SCIENZA+TIPO	SCIENZA + TIPO	SCIENZA+TIPO
	SCUOLA	SCUOLA+ESCS MEDIO	SCUOLA	SCUOLA+ESCS MEDIO
	liceo	Tecnico	Liceo	tecnico
Basilicata	95,2	43,8	38,8	22,8
Bolzano	48,8	32,3	33,6	26,9**
Campania	79,1	36,5	23,8*	15,2*
Emilia R.	114,1	65,4	90,1	54,1
Friuli V.G.	74,7	43,5	74,4	43,4
Liguria	86,8	41,4	100,5	44,1
Lombardia	94,7	45,1	116,2	52,8
Piemonte	97,9	43,3	72,4	37,1
Puglia	89,2	35,5	59,4	23,0
Sardegna	104,9	29,1	82,4	23,7**
Sicilia	90,6	38,8	58,0	34,2
Trento	74,1	47,5	41,4	35,6
Veneto	79,1	47,8	58,9	42,3
CENTRO	94,1	49,6	75,5	41,1
ITALIA	89,0	47,0	36,1	30,1

Nel grafico seguente vengono riportati i valori del LICEO e del TECNICO rilevati nel quarto modello e il relativo scarto percentuale tra i due tipi di scuola. Il grafico evidenzia che lo scarto maggiore si ha in Sardegna e Puglia, dove i liceali ottengono punteggi superiori di più del 60% a quelli del tecnico. Trento e Bolzano, al contrario, sono i territori in cui i due tipi di scuola sono più simili. Lo scarto tra i punti del liceo e quelli del tecnico, infatti, è di circa il 30% per Bolzano e di meno del 20% per Trento.

Grafico 3.6 Valori dei due tipi di scuola nel MOD4 120,0 116,2 100,5 100.0 90.1 82,4 80,0 40,0 33.6 23,7 23.0 20,0 15,2 0.0 Sardegna Puglia Liguria LombardiaPiemonte CENTRO Friuli V.G. Basilicata Sicilia Emilia R. Campania Veneto Bolzano ITALIA Walori Liceo nel MOD4 Valori Tecnico nel MOD4 → Scarto % tra i punti del Liceo e i punti del Tecnico

L'ESCS MEDIO

Per quanto riguarda l'Escs medio, possiamo vedere che esso determina un scarto rilevante nelle performance in Scienze soprattutto in Basilicata (+72 punti) e Campania (+60), le uniche regioni che si pongono sopra il valore medio italiano. Un valore alto si registra anche per Trento, Sicilia e Puglia (tra 30 e 50 punti in più). In alcune regioni, invece, esso non risulta significativo: Bolzano, Friuli, Liguria, Lombardia, Sardegna.

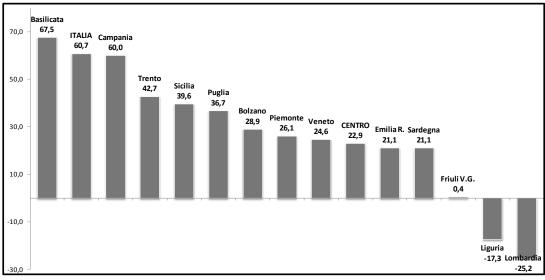

Come già evidenziato a riguardo del coefficienti di correlazione tra le scuole, queste ultime regioni, sono quelle in cui l'introduzione dell'Escs Medio non apporta un cambiamento rilevante alla riduzione della varianza between.

Tabella 3.22 Stima della variabile Escs medio, introdotta nel modello 4

·	MOD4
Escs medio	ESCS + FEMMINA + IRREGOLARE +FARE SCIENZA+TIPO SCUOLA+ESCS MEDIO
Basilicata	67,5
Bolzano	28,9*
Campania	60,0
Emilia R.	21,1*
Friuli V.G.	0,4*
Liguria	-17,3*
Lombardia	-25,2*
Piemonte	26,1
Puglia	36,7
Sardegna	21,1*
Sicilia	39,6
Trento	42,7
Veneto	24,6*
CENTRO	22,9*
ITALIA	60,7

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

Grafico 3.7 Valori di Escs medio nel MOD4

IL MODELLO COMPLETO

Nella tabella 3.24 è riportato il modello 4 per le singole regioni sovra campionate. Le regioni in cui l'insieme delle variabili ha un maggiore valore esplicativo sono Puglia, Emilia Romagna, Trento, Basilicata, Piemonte e Campania.

Tabella 3.23 Modello 4 (ESCS+FEMMINA+IRREGOLARE+FARE SCIENZA+TIPO SCUOLA+ESCS MEDIO) replicato nelle singole regioni

MOD4	Basilicata	Bolzano	Campania	Emilia R.	Friuli V.G.	Liguria	Lombardia	Piemonte	Puglia	Sardegna	Sicilia	Trento	Veneto	CENTRO	ITALIA
Stima dei parametri															
Intercetta	429	494	417	424	463	424	431	447	393	395	388	472	463	422	445
FEMMINA	-17,5	-20,4	-24,2	-11,2	-14,5	-18,5	-14,4	-10,5	-9,9	-16,0	-13,5	-6,0*	-11,7	-18,2	-14,2
Escs	3,4**	5,1	0,7*	5,0	5,1	8,1	3,3*	5,5	0,2*	1,1*	7,6	-5,7	2,3*	6,1	3,4
IRREGOLARE	-36,1	-44,6	-33,5	-49,7	-34,7	-46,7	-50,4	-48,4	-42,4	-40,2	-42,1	-45,2	-47,4	-21,4	-41,7
Interesse per la scienza Piacere nello	5,9	8,2	0,1*	7,5	6,6	4,2*	1,7*	6,4	8,7	5,8	6,3	3,1	4,4**	8,5	5,1
studio della scienza	10,4	7,6	15,8	10,6	13,3	14,0	19,5	6,7	5,5	9,1	12,4	15,4	11,2	10,0	11,2
Ore scolastiche di scienze Attività	10,1	12,5	11,3	12,7	11,0	11,9	9,0	9,2	14,8	12,5	10,0	13,1	11,7	7,7	11,7
extrascolastiche sulle scienze	-2,0*	0,0*	3,2*	1,2*	2,0*	0,5*	3,4*	2,7*	4,9	-1,1*	-4**	1,6*	5,5	-0,4*	1,3
LICEO	38,8	33,6	23,8*	90,1	74,4	100,5	116,2	72,4	59,4	82,4	58,0	41,4	58,9	75,5	36,1
TECNICO	22,8	27**	15,2*	54,1	43,4	44,1	52,8	37,1	23,0	24**	34,2	35,6	42,3	41,1	30,1
Escs medio	67,5	28,9*	60,0	21,1*	0,4*	-17*	-25*	26,1	36,7	21,1*	39,6	42,7	24,6*	22,9*	60,7
Stima della varianza															
Varianza nelle scuole	3094	3257	3094	4006	3465	3610	3340	3467	3168	3285	3446	3361	2860	3810	3392
Varianza tra le scuole	497	1096	582	435	729	991	1391	612	333	901	942	426	934	665	1904
Varianza totale	3591	4353	3676	4440	4194	4601	4731	4079	3502	4185	4388	3787	3794	4475	5296
Coefficiente di correlazione tra le scuole	0,14	0,25	0,16	0,10	0,17	0,22	0,29	0,15	0,10	0,22	0,21	0,11	0,25	0,15	0,36
Riduzione % Within da MOD0 Riduzione %	12,4	17,7	18,7	16,6	15,1	17,7	19,9	17,4	19,3	18,7	16,2	17,9	21,6	12,4	16,6
Between da MOD0	82,8	50,8	77,3	88,8	75,9	70,1	61,2	81,0	85,6	74,5	74,4	77,1	68,8	73,5	57,6
Riduzione % totale da MOD0	44,1	29,6	42,3	48,9	40,9	40,3	39,0	45,0	44,0	44,8	43,7	36,4	42,9	34,8	38,1

^{*}Parametri non significativi (p>0,10) ** Parametri significativi per 0,05<p<0,010

SOMMARIO E CONCLUSIONI

I. Le dimensioni dell'equità

4

L'analisi da noi condotta sui dati di PISA 2006 relativi alle competenze scientifiche degli studenti quindicenni riconferma il già noto basso posizionamento dell'Italia rispetto agli standard internazionali e l'altissimo livello di differenziazione territoriale – tra Nord e Sud e tra le singole unità territoriali (regioni e provincie autonome) sovracampionate – nonché tra le diverse filiere dell'istruzione secondaria superiore.

Un primo interrogativo che ci eravamo posti riguardava il livello di equità – analizzato secondo la tipologia tridimensionale del Gerese – ed il suo rapporto con il livello dell'efficacia. Non è emerso un trade off lineare tra performance media e disuguaglianza interindividuale, cioè tra l'efficacia ed il primo dei tre citati profili dell'equità. Questo significa che l'efficacia non passa necessariamente per una maggiore differenziazione tra gli individui. Si danno, al contrario, combinazioni diverse: alcune aree geografiche sono caratterizzate da ottima performance e bassa disuguaglianza (Nord Est), altre da buona performance ed elevata disuguaglianza (Nord Ovest), altre ancora da cattiva performance e bassa diseguaglianza (il Sud continentale) ed infine altre, le più negative, da cattiva performance ed elevata diseguaglianza (le Isole). Quanto al Centro, esso si colloca in una posizione intermedia sotto ambedue gli aspetti considerati.

Il secondo profilo dell'equità – il raggiungimento della soglia minima – è quello dove si manifesta invece una assai marcata correlazione positiva con la performance media: le unità territoriali più performanti sono infatti quelle con la minore quota di studenti che si collocano sotto tale soglia (cioè a livello 0 ed 1 della scala Ocse). Un'altrettanto evidente correlazione, in questo caso inversa, si verifica tra ampiezza della quota sotto soglia e ampiezza della quota degli studenti più performanti (livelli 4 e 5). Insomma, esaminando il secondo profilo dell'equità si constata che efficacia ed anche eccellenza di fatto si sovrappongono formando un tutto unico.

Il terzo profilo – diseguaglianze inter-categoriali ed in particolare influenza del background familiare sui risultati (misurato dall'indice ESCS) – che abbiamo analizzato tramite regressioni multivariate a sua volta non ha mostrato una relazione lineare né con l'efficacia né con l'eccellenza: l'influenza dell'Escs individuale, del resto ovunque piuttosto contenuta, appare infatti maggiore nel Centro, minore nel Nord, con il Sud e le Isole in posizione intermedia. Quanto al genere, esso influisce ancora nel senso di uno svantaggio, limitato ma un poco superiore a quello prodotto dal background socio-economico individuale, per le donne. Diversa però è l'articolazione territoriale di tale svantaggio: maggiore nel Sud e nel Centro, sensibilmente minore nel Nord.

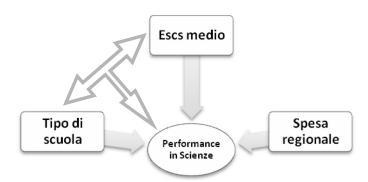
Altre diseguaglianze inter-categoriali si riveleranno nella nostra analisi di maggior peso, segnatamente quelle di tipo territoriale e socio-territoriale. Di esse si parlerà in seguito.

II. Le variabili che "contano"

Nel corso delle analisi (regressioni lineari e multi-livello) si sono individuati differenti gradi di influenza delle variabili da noi selezionate per descrivere e spiegare le dinamiche dei punteggi Pisa in scienze a livello nazionale.

In ordine di rilevanza, troviamo prima di tutto un gruppo composto da tre variabili: due relative alle scuole – il tipo di scuola e l'ESCS medio di istituto, ed una, l'IRREGOLARITA' (cioè il ritardo nel percorso) relativa invece agli individui. Quest'ultima variabile è quella che più si avvicina al concetto di merito; nel questionario studenti Pisa 2006 non si trovano infatti altri e più soddisfacenti item relativi alle capacità mostrate dai rispondenti nel percorso scolastico pregresso. Quanto alle prime due variabili, vi è da dire che esse si presentano tanto singolarmente quanto congiuntamente; sono cioè fortemente correlate ma dispongono anche di un potere predittivo autonomo.

E' interessante poi notare che l'Escs medio si è palesato un fattore molto più influente dell'Escs individuale, il quale ad esso e al tipo di scuola risulta del resto fortemente correlato. Che cosa determina l'Escs medio di un istituto scolastico, e quindi qual è il significato da dare a questa variabile finora poco considerata dagli studi italiani sulle diseguaglianze educative? A determinare l'Escs medio di un istituto è anzitutto la sua collocazione geografica che ne prefigura in una certa misura il bacino di utenza, per cui se la zona ove esso è ubicato è borghese ed acculturata è probabile che il suo Escs medio sia elevato, mentre il contrario accade se la zona è operaia. In secondo luogo i processi di scelta da parte delle famiglie, in particolare delle famiglie borghesi ed acculturate, quelle che possiedono più risorse economiche ed informative per individuare le scuole migliori e per indirizzarvi i propri figli, indipendentemente dalla loro ubicazione. Si generano così per autoselezione i ben noti fenomeni di cream skimming, cioè di segregazione sociale e culturale delle scuole. A proposito di segregazione, è peraltro interessante notare che, controllata per il livello medio dell'Escs, la sua deviazione standard si sia dimostrata poco influente e, per quel poco in cui lo è, associata positivamente piuttosto che negativamente alle performance individuali. E' questo, insieme alla irrilevanza dei criteri di eterogeneità o omogeneità nella composizione delle classi, un risultato che mostra come l'omogeneità composizionale mentre lavora contro l'equità non gioca a favore dell'efficacia.


Dalle tabelle 2.1. e 3.1. emerge che sull'intero campione nazionale di studenti delle secondarie superiori l'Escs medio a livello di scuola pesa leggermente di più del tipo di scuola frequentato. Tuttavia, non appena inseriamo nei modelli di regressione individuali il controllo geografico (Tab.2.1 e Tab.2.7), questa gerarchia esplicativa cambia in modo sostanziale.

Innanzitutto, tra le variabili con maggiore impatto irrompono, come ci si attendeva, le macro-aree. In particolare assai robusto si conferma il vantaggio prodotto dall'ubicazione della scuola al Nord piuttosto che al Sud, essendo il relativo differenziale pari a ben 68 punti della scala Ocse. Inoltre, il beta standardizzato dell'Escs medio perde valore mentre il tipo di scuola diventa la variabile più potente nel determinare il punteggio in scienze (il relativo coefficiente comporta una variazione di 60 punti). Possiamo perciò affermare che una parte dell'effetto della variabile Escs medio venga incorporata dalle due variabili

dummy (Nord e Centro vs. Sud) relative alle macro-aree geografiche. E ciò per ragioni che saranno richiamate in seguito.

E' da rilevare infine che il nostro modello di regressione lineare "completo" presenta un R² molto elevato (oltre lo 0,45), a dimostrazione della sua buona efficacia nello spiegare la varianza dei punteggi. Presumibilmente, in base a quanto si dirà più avanti a proposito del nostro modello di analisi multilivello cui si è data una struttura molto simile, esso potrebbe essere efficace nello spiegare più la varianza di 2° e 3° livello che quella di 1°.

Una conferma dell'assetto esplicativo appena delineato viene fornita dall'analisi multilivello condotta su tre piani - individuale, di scuola, regionale (vedi tab. 3.1) - che ci permette di osservare l'impatto delle due sopra menzionate variabili — tipo di scuola ed Escs medio - nella riduzione della variabilità dei punteggi rispetto al modello cosiddetto "nullo". Tale analisi evidenzia inoltre che tra le variabili "che contano" bisogna considerare anche la spesa regionale per studente. In sostanza, si osservano tre effetti diretti sulla varianza extra-individuale della performance in scienze: l'effetto della filiera che incide sul livello scuola, l'effetto dell'Escs medio che incide sul livello scuola e su quello regionale, e l'effetto della spesa per studente che incide sul livello regionale. Mentre quest'ultimo è un effetto autonomo che non interagisce con gli altri fattori esplicativi, l'Escs medio e la filiera mostrano anche un effetto congiunto che impatta ulteriormente sulle performance in scienze.

Un secondo grado di influenza è raggiunto dalle variabili motivazionali e di contatto con la scienza, cioè curricolari ed esperienziali, da noi introdotte dopo accurata selezione. Queste variabili mostrano un potere esplicativo inferiore rispetto alle due precedenti e nondimeno di un certo rilievo. L'aspetto più interessante (illustrato nel punto 3) è che esse in parte sono associate all'Escs medio ed individuale e/o al tipo di scuola, ma in parte (in particolare le due più importanti: il piacere per la scienza e il numero di ore curricolari di lezione) dispiegano una loro influenza autonoma.

Un terzo grado di influenza è attribuibile infine alle due variabili ascrittive e biografiche individuali: il genere e l'Escs individuale. La prima, che gioca tuttora a sfavore delle donne, appare un poco più forte della seconda, il cui effetto, sebbene contenuto, non appare trascurabile.

Infine, possiamo notare che tra le variabili rilevate a livello scuola che sono risultate statisticamente significative in una regressione a limitata a quel livello (a livello individuale il loro impatto si è manifestato ancora più debole tanto da indurci a non inserirle nei nostri modelli di regressione) tre hanno mostrato un peso maggiore: la promozione della cultura scientifica, il giudizio (dei dirigenti) sulle risorse a disposizione (attrezzature, materiali didattici, ecc.) e soprattutto quello sulla qualità degli insegnanti di materie scientifiche (vedi tab.2.10). Molte altre variabili, alcune delle quali spesso considerate importanti nei dibattiti sulla scuola - ad esempio, la dimensione degli istituti, la dicotomia città/campagna, i ratios docenti-studenti, i criteri impiegati per la composizione delle classi – si sono rivelate invece non influenti (sotto o poco al di sopra della soglia della significatività).

III. Nelle scuole e tra le scuole

La nostra ricerca conferma la presenza nel nostro paese di una più forte variabilità tra le scuole piuttosto che nelle scuole: i dati riportati sui documenti Ocse-Pisa, a tal riguardo, mostrano che l'Italia è tra i primi posti nella graduatoria internazionale per quanto riguarda l'incidenza della varianza inter-scolastica sulla varianza totale (vedi tab. 3.2). Quando noi abbiamo inserito nell'analisi un terzo livello, quello regionale, si è constatato che la componente principale della varianza extra-individuale (2° e 3° livello) è quella che intercorre fra le scuole entro la medesima regione, essendo la varianza fra le regioni importante ma meno pronunciata (v. grafico 3.1).

Questo dato ci dice che in Italia la scelta (da parte dell'individuo o della sua famiglia) di un certo tipo di scuola o di un certo istituto produce una forte effetto di clusterizzazione degli studenti. Come già evidenziato, la scelta della filiera educativa, e in certe aree territoriali anche quella di un determinato istituto scolastico entro la medesima filiera, hanno un effetto rilevante, ed in parte interagente, nello spiegare le differenze di punteggio (tab. 3.1). Si tratta di due fattori che rispecchiano le esistenti diseguaglianze sociali e territoriali e al tempo stesso ne producono di nuove. Di qui l'opportunità, per un'analisi sull'equità, di non rimanere ancorati al livello individuale, come la tipologia del Gerese che ha costituito il nostro punto di partenza di ordine concettuale, bensì di estendere lo sguardo ai livelli aggregati: di istituto e anche superiori al singolo istituto.

Come si è già indicato, le variabili che abbiamo inserito nel modello completo a tre livelli (tabella 3.1: MOD11) riescono a produrre rispetto al modello nullo:

- Una riduzione del 17% della varianza a livello studente;
- Una riduzione del 72% della varianza a livello scuola;
- Una riduzione del 55% della varianza regionale;
- Una riduzione complessiva pari al 43%.

Si palesa così una buona riuscita dei nostri modelli nel dar conto dei meccanismi generativi della varianza extra-individuale. E nello stesso tempo la loro inadeguatezza nello spiegare la varianza a livello studente, che richiederebbe la messa in campo di variabili a grana più fine, a partire da quelle relative alle singole classi, che sono – non lo si può

dimenticare – il luogo cruciale dei processi di apprendimento scolastici. Comunque, tra le variabili da noi utilizzate quelle che sembrano incidere maggiormente sulla varianza within sono il gruppo di cui si parlerà nel punto seguente ("contatto con la scienza") e l'irregolarità del percorso scolastico, per lo più sinonimo di ripetenze. Entrambe, peraltro, incidono anche sulla varianza between.

IV. Il contatto con la scienza

A partire dalle variabili motivazionali, di atteggiamento, curricolari ed esperienziali rilevate fra gli studenti e usando un procedimento di regressione *step-wise*, abbiamo selezionato 4 variabili (due di tipo motivazionale, una relativa agli orari di insegnamento delle materie afferenti alle scienze e una relativa alle attività extra-scolastiche legate alla scienza che gli studenti svolgono fuori dalla scuola), che abbiamo successivamente testato singolarmente ed in modo congiunto. Queste quattro variabili, prese insieme, spiegano poco meno del 10% della varianza complessiva. Le più rilevanti sono quelle relative al numero di ore curricolari e il piacere per la scienza. Rispetto alla relazione con le variabili di background la sola il cui effetto sui punteggi non venga "assorbito" in parte dall' Escs medio e dal tipo di scuola è la prima, ma anche la seconda mostra un grado rilevante di autonomia (vedi tab. 2.2-2.5).

V. I territori

Come già mostrato nel punto 2 delle conclusioni, le variabili macro-territoriali (Nord e Centro vs. Sud) hanno un notevole peso sui punteggi ottenuti dagli studenti in scienze evidenziando un divario così macroscopico d porre tanto un problema di equità particolarmente drammatico per il nostro paese quanto un problema di efficacia, dal momento che esso ha l'effetto di trascinare prepotentemente verso il basso l'Italia nelle classifiche internazionali.

A che cosa si deve tale divario? Non è facile rispondere ma quanto si è detto prima parlando della scomposizione della varianza su tre livelli ci può suggerire una risposta sia pure parziale: contano sia l'Escs medio che la spesa regionale (intesa in senso largo, che comprende Regioni ed Enti locali), entrambe più elevate nel Nord e nel Centro rispetto al Sud. Ciò non significa che altri fattori non concorrano e che alcuni di essi non mettano in gioco in modo diretto l'azione delle scuole e degli insegnanti. Tuttavia, attribuire a questi due soggetti l'intera responsabilità del ritardo meridionale, come sovente avviene in sede politica e nei media, alla luce dei dati disponibili appare un'interpretazione fuorviante ed ingiustamente colpevolizzante.

Dalle regressioni replicate nelle tre macro aree (tab. 2.8) emergono poi due altre interessanti informazioni. La prima è che l'impatto autonomo dell'Escs medio è forte al Sud, di media entità al Centro e molto contenuto al Nord. La seconda è che il contrario accade per il tipo di scuola: il suo effetto autonomo , pur essendo robusto in tutti e tre i contesti territoriali, lo è infatti decisamente di più nel Nord rispetto al Sud, con il Centro di

nuovo in una posizione intermedia. Come spiegare questa diversità? Avanziamo la seguente interpretazione. Al Nord il processo di selezione sociale passa attraverso un'unica scelta, quella della filiera, per esempio del liceo per i figli della borghesia e delle famiglie acculturate. Al Sud la selezione avviene invece attraverso due scelte consecutive: prima della filiera e poi dell'istituto all'interno della filiera. Qui le famiglie borghesi ed acculturate mandano sì i loro figli al liceo, ma ciò non basta perché la scelta non è abbastanza discriminante essendo la composizione sociale dei licei più eterogenea che al Nord. Si consideri in proposito che l'istruzione tecnica nelle regioni meridionali è meno diffusa e meno remunerativa sul mercato del lavoro e quindi la domanda si indirizza verso i licei in una misura ancora più accentuata che nelle altre regioni italiane. Le famiglie borghesi ed acculturate debbono quindi scegliere anche un determinato tipo di liceo, un istituto che per ubicazione territoriale o per autoselezione sociale abbia un background socio-culturale mediamente più elevato ed anche per questo assicuri, da un lato maggiore prestigio e capitale relazionale, dall'altro migliori livelli di apprendimento. L'istituto è infatti uno dei luoghi – l'altro, non meno ma forse ancor più importante, è la classe – dove si dispiegano i peer effects che nella nostra indagine si confermano essere fattori di grande rilevanza per spiegare il successo o l'insuccesso scolastico.

Notiamo, infine, che complessivamente, quando si valuta il peso di entrambe le variabili (misurato con R²) nella spiegazione della variazione delle performance, si osserva un loro maggior impatto nel Centro e nel Sud che nel Nord.

Queste dinamiche sono state più chiaramente evidenziate dai modelli di regressione multipla e multilivello applicati ai dati delle singole unità territoriali sovracampionate.

Dall'analisi dei campioni regionali e provinciali autonomi emerge una graduatoria che in parte confonde l'asse Nord-Centro-Sud che caratterizza le performance ai test di scienze rilevate sul piano nazionale. Infatti, i valori di R² più elevati dei nostri modelli di regressione completi a 10 variabili (vedi Tab. 2.14) sono quelli della Basilicata, della Sicilia, dell'Emilia Romagna, della Puglia, del Veneto, della Sardegna. C'è poi un fascia intorno alla media composta dal Piemonte, dalla Campania, dal Friuli Venezia Giulia e dalla Lombardia. Infine una fascia con bassi valori di R² composta dalla Liguria, da Trento e da Bolzano.

E' poi da notare che nei casi del Sud continentale - la Basilicata, la Campania, la Puglia – cui si affianca il Veneto l'effetto dell'Escs medio risulta decisamente più forte che negli altri casi. Invece nei casi del Nord Ovest – Lombardia, Liguria, Emilia Romagna, Piemonte – e delle Isole – Sardegna e Sicilia – ad essere particolarmente forte è l'effetto del beta standardizzato del tipo di scuola (in particolare del "liceo").

Le differenze fra le regioni in termini di scomposizione della varianza nelle scuole e tra le scuole sono molto marcate. I valori minimi della varianza tra le scuole (tra 30 e 40%) si registrano in due regioni del Sud, Puglia e Campania, e nelle due province autonome, Trento e Bolzano. I picchi si hanno invece in Lombardia, Sicilia e Sardegna (tab. 3.3; grafico 3.2). Confrontando la varianza tra le scuole e il punteggio medio degli istituti, si evidenzia una scomposizione entro l'area del Nord e, soprattutto, entro quella del Sud (grafico 3.3). Le regioni del Sud sono infatti tutte caratterizzate, come sappiamo, da basse performance ma mentre Sicilia, Sardegna e Basilicata appaiono più disomogenee al loro interno, nei casi

di Puglia e Campania si rileva una molto maggiore omogeneità. Le regioni del Nord sono invece nel complesso caratterizzate, oltre che da migliori performance, da un medio o alto livello di disomogeneità tra le scuole, tranne Trento e Bolzano che hanno i punteggi più elevati ma dove il grado di disomogeneità risulta decisamente contenuto, anche (ma probabilmente non solo) per la loro più ridotta estensione geografica. Si tratta di un'evidenza molto simile a quella, cui si è già accennato, che emerge dall'analisi della deviazione standard dei punteggi degli studenti e ciò non sorprende data la particolare importanza che assume in Italia, come si è detto, la varianza between schools.

In quali regioni le variabili che abbiamo introdotto nel nostro modello completo di analisi multi-livello hanno ridotto in modo più significativo la varianza tra le scuole? Il risultato converge ampiamente con quanto emerso dai modelli di regressione multipla, poiché in Basilicata, Emilia Romagna e Puglia buona parte delle differenze tra le scuole viene assorbita dalle variabili che nell'analisi multilivello abbiamo preso in considerazione quali fattori esplicativi (tab.3.23). Anche l'interazione tra Escs medio e tipo di scuola ripresenta le interessanti differenze tra le varie regioni emerse dai modelli di regressione (vedi tab. 3.18 e grafico 3.4).

In generale, possiamo concludere che, sebbene si sia ancora in presenza di un sistema di governance del settore di tipo centralista, le differenze regionali in termini di efficacia e di equità appaiono molto pronunciate e vanno anche al di là di quelle, ben note, che riguardano le macro-aree geografiche.

VI. Implicazioni per le policy

La nostra indagine mostra anzitutto come una politica volta ad aumentare l'efficacia o la qualità del nostro sistema di istruzione obbligatoria – i quindicenni sottoposti ai test Pisa stanno appunto per completare la scuola dell'obbligo – non possa prescindere dal proporsi al tempo stesso l'obiettivo dell'equità, oggi gravemente compromessa dall'esistenza di grandi divari di ordine sociale e territoriale. Divari che peraltro non sembrano trovare giustificazione in circostanze di fatto riferibili alla cosiddetta ideologia del merito. La maggior parte della varianza dei punteggi, infatti, può esser fatta risalire a fattori che esulano dal merito individuale, per come questo può essere catturato – e lo è certamente in modo assai imperfetto – dai dati reperibili nel Dataset Pisa 2006.

E' vero che l'influenza autonoma del background individuale degli studenti, misurato dall'indice Escs, appare, come sapevamo, modesta. Il background, che in questo caso andrebbe definito "socio-territoriale" piuttosto che semplicemente "sociale", si è rivelato contare assai più quando viene aggregato a livello di istituto scolastico che quando è considerato a livello del singolo studente. Ancor più modesto appare poi l'impatto dell'Escs individuale quando lo si confronti con quello del tipo di scuola. Non si deve però dimenticare che fra queste tre variabili esiste una forte correlazione. Gli studenti di origine sociale operaia o con scarso capitale culturale e le loro famiglie, dopo la licenza media, propendono a scegliere il professionale o il tecnico piuttosto che il liceo, e lo fanno, indipendentemente dalle competenze possedute, per motivi connessi alle aspettative, ai

calcoli di convenienza, talvolta anche al loro habitus, cioè per motivi di ordine culturale. I pochi figli della borghesia e dei ceti acculturati che compiono la stessa scelta sempre, o quasi sempre, la compiono per ragioni connesse al loro scadente profitto scolastico. Quanto agli studenti di origine sociale svantaggiata che si iscrivono al liceo, essi sono i più brillanti e motivati, perciò in grado di competere alla pari, se non con successo, con i loro compagni di origine sociale elevata. Ciò spiega perché, una volta controllato con il tipo di scuola, l'Escs individuale, già debole di per se, conti ancora di meno: in questo tratto del percorso scolastico la diseguaglianza sociale delle opportunità non incide tanto sulle competenze quanto sulla scelta della filiera. Tuttavia, l'effetto filiera, in associazione o in aggiunta all'effetto Escs medio, farà sì che i giovani con un basso status familiare, iscritti prevalentemente al professionale ed al tecnico, acquisiscano un livello di competenzechiave mediamente inferiore a quello dei giovani dallo status familiare alto, che sono iscritti prevalentemente al liceo. Si comprende così come il divario in termini di competenze, inizialmente limitato, vada progressivamente accrescendosi lungo il percorso dell'istruzione secondaria superiore. E che si porti alla fine su livelli più vicini a quelli, che appaiono molto pronunciati anche al confronto internazionale, evidenziati dalle ricerche sulla diseguaglianza sociale delle opportunità rispetto al conseguimento del diploma.

Date queste premesse, una politica indirizzata congiuntamente all'efficacia ed all'equità deve innanzitutto puntare a ridurre i vistosi scarti oggi esistenti fra le competenze-chiave di chi frequenta il liceo e quelle di chi frequenta l'istituto tecnico o, ancora di più, di chi è iscritto ad un istituto professionale. Su tale problematica che investe in pieno la questione della riforma degli ordinamenti scolastici, in particolare con riguardo alle modalità di completamento dell'obbligo, si rinvia al contributo per il Rapporto 2010 della Fondazione Agnelli a firma Luciano Benadusi e Orazio Niceforo (2010).

A questa prima indicazione per le policy se ne possono poi aggiungere altre cinque. La seconda è che occorre trovare nella fascia dell'obbligo un modo per ridurre le differenze in termini di background aggregato (Escs medio) tra istituti scolastici della stessa regione, provincia o comune, il che significa contrastare i fenomeni di segregazione e favorire invece composizioni sociali e culturali eterogenee. A tale proposito, vale la pena di rammentare che le nostre analisi, mentre confermano l'importanza dei peers' effects, non offrono invece alcun sostegno alla ipotesi che l'omogeneità paghi di più dell'eterogeneità in termini di risultati, quanto meno di risultati medi. Certamente, non è facile muoversi nella direzione qui indicata e comunque se lo si facesse andrebbe preso in considerazione tutto un ventaglio di possibili strumenti, dalla pianificazione territoriale della rete scolastica all'edilizia, dai trasporti per gli studenti a forme di incentivazione mirata. A complemento o in alternativa ad una politica di questo tipo – è la nostra terza indicazione – si potrebbe rafforzare quanto si è già cominciato a fare nel nostro paese per combattere la dispersione scolastica nelle aree e negli istituti a rischio; occorrerebbe allestire un piano di interventi contro la dispersione e l'insuccesso scolastico paragonabile, per il livello di impegno e per l'ampiezza della strumentazione, alle più riuscite esperienze straniere.

Un quarto suggerimento concerne quelle che abbiamo chiamato le "variabili motivazionali, curricolari ed esperienziali" (o, sinteticamente, di "contatto con la scienza"),

cioè caratteristiche soggettive che hanno un impatto significativo sui risultati e che si sono evidenziate in una certa misura indipendenti dai contesti socio-territoriali degli individui e delle scuole. Su questi fattori le macropolitiche e le micropolitiche scolastiche dovrebbero cercare di incidere con maggiore efficacia.

Una quinta raccomandazione va nel senso di rafforzare i programmi diretti a superare il persistente gap di genere nell'apprendimento della matematica e delle scienze favorendo lo sviluppo di interessi e vocazioni scientifiche tra le femmine fin dal ciclo iniziale dell'istruzione.

Un'ultima indicazione, *last but not least*, riguarda il divario Nord-Sud e la necessità di meglio approfondirne le cause anziché limitarsi a denunciarlo o dare il via a generiche ed ingiustificate condanne della scuola e degli insegnanti meridionali. In ogni caso, dalla nostra ricerca già emerge un dato importante: l'ammontare della spesa delle Regioni e degli Enti locali possiede un peso significativo nel determinare i divari territoriali nell'apprendimento. Sottostimarne il rilievo, come spesso si fa, e mettere mano all'attuazione del federalismo fiscale senza provvedere ad adeguate compensazioni finanziarie a favore delle aree del Sud significherebbe con ogni probabilità favorire la crescita, anziché la diminuzione, del tanto lamentato divario.

5 Allegati

5.1 Descrizione del campione

Tabella 5.1 Descrizione campione (aree sovra campionate)

	Casi non	pesati	Casi no	n pesati	
	Frequenza	%	Frequenza	%	
Bolzano	1622	8,1	3282	0,7	
Basilicata	1475	7,4	6358	1,3	
Campania	1393	7,0	66605	13,3	
Emilia Romagna	1531	7,7	29501	5,9	
Friuli Venezia Giulia	1575	7,9	8496	1,7	
Liguria	1427	7,1	11026	2,2	
Lombardia	1397	7,0	62608	12,5	
Piemonte	1464	7,3	33752	6,8	
Puglia	1531	7,7	45074	9,0	
Sardegna	1369	6,8	15333	3,1	
Sicilia	1315	6,6	51649	10,3	
Trento	1199	6,0	3417	0,7	
Veneto	1387	6,9	36450	7,3	
Regioni non sovra campionate	1324	6,6	126066	25,2	
Totale	20009	100	499616	100	

Tabella 5.2 Descrizione campione (per macro aree riaggregate)

	Casi non	pesati	Casi pe	sati
	Frequenza	%	Frequenza	%
Sud	7439	37,2	221340	44,3
Centro	808	4,0	89064	17,8
Nord	11762	58,8	189212	37,9
Totale	20009	100	499616	100

Tabella 5.3 Valori medi dell'indice Escs per macro aree

Table to the table to table to the table to t								
	Minimum	Maximum	Mean	Std. Deviation				
NORD OVEST	-2,681	2,970	0,042	0,934				
NORD EST	-3,389	3,022	0,107	0,935				
CENTRO	-2,586	3,022	0,129	0,930				
SUD	-3,122	2,970	-0,176	1,002				
SUD ISOLE	-3,319	2,561	-0,237	1,008				

Tabella 5.4 Performances medie delle regioni ed equità interindividuale (dispersione dei punteggi nelle regioni) per macro aree (nelle tre prove di Pisa 2006)

	Scienze		Matematica		Lettura	
aree	Performanc	Equità inter-	Performanc	Equità inter-	Performanc	Equità inter-
	e	individuale	е	individuale	е	individuale
NORD OVEST	510	85	495	81	505	92
NORD EST	526	86	511	87	513	89
CENTRO	489	83	469	80	484	99
SUD	449	80	441	86	444	98
SUD ISOLE	437	87	421	90	429	109

Tabella 5.5 Performances medie delle regioni ed equità interindividuale (dispersione dei punteggi nelle regioni) per macro aree

nene regioni, per macro arec							
	Scienze		Mater	Matematica		Lettura	
aree	Soglia	Quantità di	Soglia	Quantità di	Soglia	Quantità di	
	minima	eccellenza	minima	eccellenza	minima	eccellenza	
NORD OVEST	12,7	6,4	17,6	8,3	14,2	6,8	
NORD EST	9,8	9,4	14,9	12,9	13,0	8,5	
CENTRO	18,5	4,7	27,2	5,1	18,8	4,7	
SUD	33,1	0,9	41,1	2,8	34,5	2,3	
SUD ISOLE	39,2	1,1	50,0	1,7	37,1	1,1	

5.2 La cluster analysis

Tabella 5.6 Initial Cluster Centers

Tabella 3.0 ilitial cluster centers	Cluster		
	1	2	3
Escs individuale	,11	-,03	,11
Escs medio	-,04	,16	,18
Deviazione standard di Escs medio	-,15	,04	,07
Liceo	,54	,40	,42
Tecnico	,21	,30	,20
Punteggi in scienze	495,54	548,76	439,69
Deviazione standard punteggi in scienze	89,38	73,35	89,58

Tabella 5.7 Cluster Membership

Case		Distanc
Number	Cluster	е
	3	4,959
2	2	7,242
3	3	5,848
4	1	4,454
5	2	7,540
6	1	11,556
7	1	7,421
8	1	2,924
9	3	4,293
10	3	7,598
11	3	9,765
12	2	9,094
13	2	8,273

Tabella 5.8 Final Cluster Centers

	Cluster 1	Cluster 2	Cluster 3
Escs individuale	,08	,02	,05
Media di Escs nella scuola	,06	,12	,29
Deviazione standard di Escs nella scuola	-,02	,05	,07
Liceo	,51	,38	,34
Tecnico	,25	,27	,16
Punteggi in Scienze	506,96	541,17	447,34
Deviazione standard punteggi in scienze	87,64	78,36	83,51

5.3 Costruzione tramite Acp della variabile "Effetto Escs medio vs Effetto filiera"

Tabella 5.9 Descriptive Statistics

	Mean	Std. Deviation	Analysis N
Escs medio	0,1687	0,14023	13
Liceo	0,4057	0,10557	13
Tecnico	0,2205	0,06568	13

Tabella 5.10

Correlation Matrix

		Escs_mean (Media di Escs nella scuola)	liceo	tecnico
Correlation	Escs_mean (Media di Escs nella scuola)	1,000	-,806	-,604
	liceo	-,806	1,000	,472
	tecnico	-,604	,472	1,000

Tabella 5.11 Total Variance Explained

abolia 5121 Total Tallianto Explained						
	Initial Ei	Initial Eigenvalues			on Sums of Squ	ared Loadings
Compon		% of	Cumulativ		% of	Cumulativ
ent	Total	Variance	e %	Total	Variance	e %
1	2,265	75,508	75,508	2,265	75,508	75,508
2	0,560	18,654	94,162			
3	0,175	5,838	100,000			

Extraction Method: Principal Component Analysis.

Tabella 5.12 Component Matrix(a)

	Component 1
Escs medio	-0,936
Liceo	0,886
Tecnico	0,777

Extraction Method: Principal Component Analysis.

a 1 components extracted.

Tabella 5.13 Component Score Coefficient Matrix

	Component 1
Escs medio	-0,413
Liceo	0,391
Tecnico	0,343

Extraction Method: Principal Component Analysis. Component Scores.

Bibliografia

- Ball, S. J., 2003, Class strategies and the education market: The middle class and social advantage, London, Routledge Falmer.
- Benadusi L., 2001, *Equity and Education*, in Hutmacher H., Cochrane D., Bottani N. *In pursuit of equity in education*, Boston/London, Kluwer Accademic Press.
- Benadusi L., Consoli F., 2004 (a cura di), La governance della scuola, Bologna, Il Mulino.
- Benadusi L., Bottani N. (a cura di), 2006, Uguaglianza ed equità nella scuola, Milano, Erickson.
- Benadusi L., Giancola O., Viteritti A., 2008, Scuole in azione tra equità e qualità. Pratiche di ricerca in Sociologia dell'Educazione, Milano, Guerini e Associati.
- Benadusi L., Niceforo O., 2010, Obbligo scolastico o di istruzione ed equità, pratiche locali ed azioni di sistema, WP della Fondazione Agnelli.
- Benadusi L., Piccone Stella S., Viteritti A., 2009, *Dispari parità. Genere tra educazione e lavoro*, Milano, Guerini e Associati.
- Bickel R., 2007, *Multilevel Analysis for applied research. It's just regression*, New York, The Guilford Press.
- Boudon R., 1979, Istruzione e mobilità sociale, Torino, Zanichelli.
- Boudon R., 1981, Effetti perversi dell'azione sociale, Milano, Feltrinelli.
- Bourdieu P. e Passeron J.C., 1972, La riproduzione. Teoria del sistema scolastico ovvero della riproduzione dell'ordine culturale, Firenze, Guaraldi.
- Bourdieu P. e Passeron J.C., 1976, I delfini. Gli studenti e la cultura, Firenze, Guaraldi.
- Bratti M., Checchi D., Filippin A., 2007, Da dove vengono le competenze degli studenti? I divari territoriali nell'indagine OCSE PISA 2003, Bologna, Il Mulino.
- Brint, 1998, Scuola e società, Bologna, il Mulino.
- Checchi D., Ballarino G. (a cura di), 2006, *Sistema scolastico e disuguaglianza sociale*, Bologna, Il
- Duru-Bellat M., 2003, Inégalités sociales à l'école et politiques éducatives, Paris, UNESCO.
- Duru-Bellat M., Suschaut B., 2006, Organizzazione del sistema scolastico e disuguaglianze sociali di rendimento scolastico:gli insegnamenti dell'Indagine PISA2000, in Benadusi L., Bottani N. (a cura di), 2006, Uguaglianza ed equità nella scuola, Milano, Erickson.
- Esping-Andersen G., Josep Mestres, 2003, Ineguaglianza delle opportunità ed ereditarietà sociale, in "Stato e Mercato", 67.
- Fornari R., Giancola O., Salmieri S., 2009, *Traiettorie scolastiche, titoli di studio e percorsi lavorativi*, in Benadusi L., Piccone Stella S., Viteritti A., 2009, *Dispari parità. Genere tra educazione e lavoro*, Milano, Guerini e Associati.
- Gambetta D., 1990, Per amore o per forza? Le decisioni scolastiche individuali, Bologna, Il Mulino.
- Gamoran A., 1992, The variable effects of high school tracking, in "American Sociological Review", 57(6): 812-828.
- Gasperoni G. (a cura di), 2008, Le competenze degli studenti in Emilia-Romagna. I risultati di PISA 2006, Bologna, Il Mulino.

- GERESE, 2005: "L'équité des systèmes éducatifs européens. Un ensemble d'indicateurs", Service de pédagogie théorique et expérimentale, Université de Liège.
- Giancola O., 2006, *Indicatori dell'equità dell'istruzione in Italia*, in (a cura di), Benadusi L., Bottani N., *Uguaglianza ed equità nella scuola*, Milano, Erickson.
- Giancola O., 2009, Performance e diseguaglianze nei sistemi educativi europei, Napoli, ScriptaWeb.
- Giancola O., Fornari R., 2009, *Scuole e università: sorpasso e ricomposizione* in Benadusi L., Piccone Stella S., Viteritti A., 2009, *Dispari parità. Genere tra educazione e lavoro*, Milano, Guerini e Associati.
- Hutmacher H., Cochrane D., Bottani N., 2001, *In pursuit of equity in education*, Boston/London, Kluwer Accademic Press.
- Landri P., Quierolo Palmas L., 2004 (a cura di), Scuole in tensione, Milano, Angeli.
- Ocse, 2007,2008, 2009: "Regards sur l'éducation: les indicateurs de l' OCDE", Parigi, Ocse.
- Ocse-Pisa, 2005, School Factors Related to Quality and Equity. Results from PISA 2000, Parigi, Ocse.
- Ocse-Pisa, 2009, PISA Data Analysis Manual SPSS Second Edition, Parigi, Ocse.
- Schizzerotto A., Barone C., 2006, Sociologia dell'istruzione, Bologna, Il Mulino.
- Serpieri, R., 2008, Governance delle politiche scolastiche, Milano, FrancoAngeli.
- Snijders T., Bosker R., Multilevel Model Analysis: an introduction to basic and advanced multilevel modeling, Sage, CA.